EGNN: Graph structure learning based on evolutionary computation helps more in graph neural networks

被引:74
|
作者
Liu, Zhaowei [1 ]
Yang, Dong [1 ]
Wang, Yingjie [1 ]
Lu, Mingjie [1 ]
Li, Ranran [1 ]
机构
[1] Yantai Univ, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural networks; Evolutionary computation; Graph representation learning; Graph structure learning;
D O I
10.1016/j.asoc.2023.110040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, graph neural networks (GNNs) have been successfully applied in many fields due to their characteristics of neighborhood aggregation and have achieved state-of-the-art performance. While most GNNs process graph data, the original graph data is frequently noisy or incomplete, resulting in suboptimal GNN performance. In order to solve this problem, a Graph Structure Learning (GSL) method has recently emerged to improve the performance of graph neural networks by learning a graph structure that conforms to the ground truth. However, the current strategy of GSL is to iteratively optimize the optimal graph structure and a single GNN, which will encounter several problems in training, namely vulnerability and overfitting. A novel GSL approach called evolutionary graph neural network (EGNN) has been introduced in this work in order to improve defense against adversarial attacks and enhance GNN performance. Unlike the existing GSL method, which optimizes the graph structure and enhances the parameters of a single GNN model through alternating training methods, evolutionary theory has been applied to graph structure learning for the first time in this work. Specifically, different graph structures generated by mutation operations are used to evolve a set of model parameters in order to adapt to the environment (i.e., to improve the classification performance of unlabeled nodes). An evaluation mechanism is then used to measure the quality of the generated samples in order to retain only the model parameters (progeny) with good performance. Finally, the progeny that adapt to the environment are retained and used for further optimization. Through this process, EGNN overcomes the instability of graph structure learning and always evolves the best progeny, providing new solutions for the advancement and development of GSL. Extensive experiments on various benchmark datasets demonstrate the effectiveness of EGNN and the benefits of evolutionary computation-based graph structure learning.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology
    Dehmamy, Nima
    Barabasi, Albert-Laszlo
    Yu, Rose
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] DAG-GNN: DAG Structure Learning with Graph Neural Networks
    Yu, Yue
    Chen, Jie
    Gao, Tian
    Yu, Mo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [43] Explanation-based Graph Neural Networks for Graph Classification
    Seo, Sangwoo
    Jung, Seungjun
    Kim, Changick
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2836 - 2842
  • [44] Graph-based Recommendation using Graph Neural Networks
    Dossena, Marco
    Irwin, Christopher
    Portinale, Luigi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1769 - 1774
  • [45] Graph-based Dependency Parsing with Graph Neural Networks
    Ji, Tao
    Wu, Yuanbin
    Lan, Man
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 2475 - 2485
  • [46] WFF-EGNN: Encrypted Traffic Classification Based on Weaved Flow Fragment via Ensemble Graph Neural Networks
    Chen, Zihan
    Cheng, Guang
    Niu, Dandan
    Qiu, Xing
    Zhao, Yuyu
    Zhou, Yuyang
    IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1 : 389 - 411
  • [47] Graph Structure Reshaping Against Adversarial Attacks on Graph Neural Networks
    Wang, Haibo
    Zhou, Chuan
    Chen, Xin
    Wu, Jia
    Pan, Shirui
    Li, Zhao
    Wang, Jilong
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6344 - 6357
  • [48] Knowledge Distillation Improves Graph Structure Augmentation for Graph Neural Networks
    Wu, Lirong
    Lin, Haitao
    Huang, Yufei
    Li, Stan Z.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [49] Self-Supervised Graph Structure Refinement for Graph Neural Networks
    Zhao, Jianan
    Wen, Qianlong
    Ju, Mingxuan
    Zhang, Chuxu
    Ye, Yanfang
    arXiv, 2022,
  • [50] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681