EGNN: Graph structure learning based on evolutionary computation helps more in graph neural networks

被引:74
|
作者
Liu, Zhaowei [1 ]
Yang, Dong [1 ]
Wang, Yingjie [1 ]
Lu, Mingjie [1 ]
Li, Ranran [1 ]
机构
[1] Yantai Univ, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural networks; Evolutionary computation; Graph representation learning; Graph structure learning;
D O I
10.1016/j.asoc.2023.110040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, graph neural networks (GNNs) have been successfully applied in many fields due to their characteristics of neighborhood aggregation and have achieved state-of-the-art performance. While most GNNs process graph data, the original graph data is frequently noisy or incomplete, resulting in suboptimal GNN performance. In order to solve this problem, a Graph Structure Learning (GSL) method has recently emerged to improve the performance of graph neural networks by learning a graph structure that conforms to the ground truth. However, the current strategy of GSL is to iteratively optimize the optimal graph structure and a single GNN, which will encounter several problems in training, namely vulnerability and overfitting. A novel GSL approach called evolutionary graph neural network (EGNN) has been introduced in this work in order to improve defense against adversarial attacks and enhance GNN performance. Unlike the existing GSL method, which optimizes the graph structure and enhances the parameters of a single GNN model through alternating training methods, evolutionary theory has been applied to graph structure learning for the first time in this work. Specifically, different graph structures generated by mutation operations are used to evolve a set of model parameters in order to adapt to the environment (i.e., to improve the classification performance of unlabeled nodes). An evaluation mechanism is then used to measure the quality of the generated samples in order to retain only the model parameters (progeny) with good performance. Finally, the progeny that adapt to the environment are retained and used for further optimization. Through this process, EGNN overcomes the instability of graph structure learning and always evolves the best progeny, providing new solutions for the advancement and development of GSL. Extensive experiments on various benchmark datasets demonstrate the effectiveness of EGNN and the benefits of evolutionary computation-based graph structure learning.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Graph Structure Learning for Robust Graph Neural Networks
    Jin, Wei
    Ma, Yao
    Liu, Xiaorui
    Tang, Xianfeng
    Wang, Suhang
    Tang, Jiliang
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 66 - 74
  • [2] Heterogeneous Graph Structure Learning for Graph Neural Networks
    Zhao, Jianan
    Wang, Xiao
    Shi, Chuan
    Hu, Binbin
    Song, Guojie
    Ye, Yanfang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4697 - 4705
  • [3] EGNN: Constructing explainable graph neural networks via knowledge distillation
    Li, Yuan
    Liu, Li
    Wang, Guoyin
    Du, Yong
    Chen, Penggang
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [4] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [5] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [6] Refining Euclidean Obfuscatory Nodes Helps: A Joint-Space Graph Learning Method for Graph Neural Networks
    Liu, Zhaogeng
    Ji, Feng
    Yang, Jielong
    Cao, Xiaofeng
    Zhang, Muhan
    Chen, Hechang
    Chang, Yi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11720 - 11733
  • [7] Graph Neural Networks for Brain Graph Learning: A Survey
    Luo, Xuexiong
    Wu, Jia
    Yang, Jian
    Xue, Shan
    Beheshti, Amin
    Sheng, Quan Z.
    McAlpine, David
    Sowman, Paul
    Giral, Alexis
    Yu, Philip S.
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 8170 - 8178
  • [8] Learning Graph Neural Networks with Deep Graph Library
    Zheng, Da
    Wang, Minjie
    Gan, Quan
    Zhang, Zheng
    Karypis, George
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 305 - 306
  • [9] Learning graph edit distance by graph neural networks
    Riba, Pau
    Fischer, Andreas
    Llados, Josep
    Fornes, Alicia
    PATTERN RECOGNITION, 2021, 120
  • [10] Graph Neural Network based Multi-instance Learning with Graph Structure Learning
    Liu, Fan
    Liu, Weidong
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 505 - 510