Misbehavior detection system with semi-supervised federated learning

被引:3
|
作者
Kristianto, Edy [1 ]
Lin, Po-Ching [1 ]
Hwang, Ren-Hung [2 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Coll Artificial Intelligence, Tainan, Taiwan
关键词
Misbehavior detection system; Semi-supervised learning; V2X communications; Federated learning; AUTHORIZATION USAGE CONTROL; SAFETY DECIDABILITY;
D O I
10.1016/j.vehcom.2023.100597
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
V2X communications can enhance transportation safety by exchanging safety information between vehicles, road infrastructures, networks, and pedestrians. However, the safety messages are vulnerable to disruption from faulty components or an attack that can cause misinformation. Recently, a machine learning-based misbehavior detection system (MDS) has been widely investigated to detect the misbehaving vehicles to secure the V2X communications. Nonetheless, machine learning models need sufficient labeled data for learning purposes. However, the volume of unlabeled data is usually larger than that of labeled data in practice. Moreover, transferring the large dataset to a centralized learning model will consume much bandwidth. Thus, we propose a semi-supervised federated learning MDS to overcome the limitations of unlabeled data and bring the training close to the data sources to reduce the bandwidth to the core network. Overall, our model with only limited labeled data training (5%-30%) can achieve the F1-score up to 0.96 and the recall up to 0.95. The F1-score is up to 0.26 higher and the recall is up to 0.29 higher than the performance of centralized supervised learning. The federated learning model can reduce the core network bandwidth utilization by up to 95%.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Intrusion detection for Softwarized Networks with Semi-supervised Federated Learning
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5244 - 5249
  • [2] A Semi-Supervised Federated Learning Scheme via Knowledge Distillation for Intrusion Detection
    Zhao, Ruijie
    Yang, Linbo
    Wang, Yijun
    Xue, Zhi
    Gui, Guan
    Ohtsukit, Tomoaki
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2688 - 2693
  • [3] Semi-supervised federated learning on evolving data streams
    Mawuli, Cobbinah B.
    Kumar, Jay
    Nanor, Ebenezer
    Fu, Shangxuan
    Pan, Liangxu
    Yang, Qinli
    Zhang, Wei
    Shao, Junming
    INFORMATION SCIENCES, 2023, 643
  • [4] Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
    Shi, Yanhang
    Chen, Siguang
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1060 - 1073
  • [5] Semi-HFL: semi-supervised federated learning for heterogeneous devices
    Zhengyi Zhong
    Ji Wang
    Weidong Bao
    Jingxuan Zhou
    Xiaomin Zhu
    Xiongtao Zhang
    Complex & Intelligent Systems, 2023, 9 : 1995 - 2017
  • [6] Semi-HFL: semi-supervised federated learning for heterogeneous devices
    Zhong, Zhengyi
    Wang, Ji
    Bao, Weidong
    Zhou, Jingxuan
    Zhu, Xiaomin
    Zhang, Xiongtao
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1995 - 2017
  • [7] METALS : seMi-supervised fEderaTed Active Learning for intrusion detection Systems
    Aouedi, Ons
    Jajoo, Gautam
    Piamrat, Kandaraj
    2024 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, ISCC 2024, 2024,
  • [8] A Knowledge Transfer-Based Semi-Supervised Federated Learning for IoT Malware Detection
    Pei, Xinjun
    Deng, Xiaoheng
    Tian, Shengwei
    Zhang, Lan
    Xue, Kaiping
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (03) : 2127 - 2143
  • [9] SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 474 - 487
  • [10] ASCFL: Accurate and Speedy Semi-Supervised Clustering Federated Learning
    He, Jingyi
    Gong, Biyao
    Yang, Jiadi
    Wang, Hai
    Xu, Pengfei
    Xing, Tianzhang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (05): : 823 - 837