Gradient-Guided Single Image Super-Resolution Based on Joint Trilateral Feature Filtering

被引:7
|
作者
Zuo, Yifan [1 ]
Xie, Jiacheng [1 ]
Wang, Hao [1 ]
Fang, Yuming [1 ]
Liu, Deyang [2 ]
Wen, Wenying [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Management, Nanchang, Peoples R China
[2] Anqing Normal Univ, Sch Comp Sci & Informat, Anqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient-guided single image super-resolution; joint trilateral filter; deep convolutional neural network; NETWORK; PHOTOGRAPHY; FLASH;
D O I
10.1109/TCSVT.2022.3204642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The state of the arts (SOTAs) of single image super-resolution always exploit guidance from gradient prior. The fusion of gradient guidance is implemented by channel-wise concatenation followed by a convolutional layer. However, the kernels sharing in spatial positions cannot adaptively tune the effect of gradient guidance for all feature positions. To resolve this problem, a novel network module is proposed to simulate the traditional Joint Trilateral Filter (JTF) by extending the definition domain from pixels to features. Moreover, to improve the efficiency and flexibility, the functions of JTF kernel generation for image features and gradient features are explicitly learned instead of individual kernel weights, e.g., the exponential functions in the traditional JTF. Based on the proposed JTF modules, this paper follows the gradient-guided framework which simultaneously infers high-resolution (HR) image features and HR gradient features within two parallel branches, respectively. Specifically, by treating image features and gradient features as cross guidance to each other, the proposed JTF modules adaptively adjust the fusion patterns for local features via a bi-directional way. By doing so, the quality of image features and gradient features is alternatively enhanced. Compared with SOTAs, the proposed JTF-SISR shows improvement which is evaluated for multiple upsampling scales and degradation modes on 5 synthetic datasets, i.e., Set5, Set14, B100, Urban100 and Manga109, and 1 real dataset, i.e., RealSRSet. The code is public in https://github.com/a239xjc/JTF-SISR.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 50 条
  • [31] Image super-resolution reconstruction based on implicit image functions
    Lin, Hai
    Yang, JunJie
    IET IMAGE PROCESSING, 2024, 18 (10) : 2690 - 2701
  • [32] High-Frequency Feature Transfer for Multispectral Image Super-Resolution
    Zhao, Fan
    Wu, Xue
    Zhao, Wenda
    Zhang, Zhepu
    Wang, Haipeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Text Image Super-Resolution Guided by Text Structure and Embedding Priors
    Huang, Cong
    Peng, Xiulian
    Liu, Dong
    Lu, Yan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)
  • [34] Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution
    Yang, Wenhan
    Feng, Jiashi
    Yang, Jianchao
    Zhao, Fang
    Liu, Jiaying
    Guo, Zongming
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) : 5895 - 5907
  • [35] SUB-APERTURE FEATURE ADAPTATION IN SINGLE IMAGE SUPER-RESOLUTION MODEL FOR LIGHT FIELD IMAGING
    Kar, Aupendu
    Nehra, Suresh
    Mukhopadhyay, Jayanta
    Biswas, Prabir Kumar
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3451 - 3455
  • [36] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [37] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [38] Uncertainty-Driven Loss for Single Image Super-Resolution
    Ning, Qian
    Dong, Weisheng
    Li, Xin
    Wu, Jinjian
    Shi, Guangming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [39] SRDiff: Single image super-resolution with diffusion probabilistic models
    Li, Haoying
    Yang, Yifan
    Chang, Meng
    Chen, Shiqi
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    Chen, Yueting
    NEUROCOMPUTING, 2022, 479 : 47 - 59
  • [40] Single image super-resolution via a ternary attention network
    Yang, Lianping
    Tang, Jian
    Niu, Ben
    Fu, Haoyue
    Zhu, Hegui
    Jiang, Wuming
    Wang, Xin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13067 - 13081