Boundedness of solutions to Dirichlet, Neumann and Robin problems for elliptic equations in Orlicz spaces

被引:6
作者
Barletta, Giuseppina [1 ]
Cianchi, Andrea [2 ]
Marino, Greta [3 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento Ingn Civile Energia Ambiente & Mat, Via Zehender, I-89122 Reggio Di Calabria, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Univ Augsburg, Inst Math, Univ Str 2, D-86159 Augsburg, Germany
关键词
35J25; 35J60; 35B65; DIFFERENTIAL-EQUATIONS; SOBOLEV EMBEDDINGS; EIGENVALUE PROBLEM; REGULARITY; GROWTH; SUPERSOLUTIONS; THEOREM;
D O I
10.1007/s00526-022-02393-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundary value problems for second-order elliptic equations in divergence form, whose nonlinearity is governed by a convex function of non-necessarily power type, are considered. The global boundedness of their solutions is established under boundary conditions of Dirichlet, or Neumann, or Robin type. A decisive role in the results is played by optimal forms of Orlicz-Sobolev embeddings and boundary trace embeddings, which allow for critical growths of the coefficients.
引用
收藏
页数:42
相关论文
共 51 条