Well-posedness of mean reflected BSDEs with non-Lipschitz coefficients

被引:1
作者
Cui, Fengfeng [1 ]
Zhao, Weidong [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Mean reflected BSDEs; Non-Lipschitz coefficients; STOCHASTIC DIFFERENTIAL-EQUATIONS; PARTICLES SYSTEMS; QUADRATIC BSDES; CONSTRAINTS;
D O I
10.1016/j.spl.2022.109718
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at solving a new type of BSDE with mean reflection under weaker assumptions on the coefficients. We establish the well-posedness of mean reflected BSDEs whenever the generator is non-Lipschitz in the y argument.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 28 条
[21]   Backward stochastic differential equations with continuous coefficient [J].
Lepeltier, JP ;
SanMartin, J .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (04) :425-430
[22]   Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs [J].
Li, Juan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (01) :47-68
[23]   ADAPTED SOLUTIONS OF BACKWARD STOCHASTIC DIFFERENTIAL-EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS [J].
MAO, XR .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 58 (02) :281-292
[24]  
PARDOUX E, 1992, LECT NOTES CONTR INF, V176, P200
[25]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[26]   Reflected BSDE with a constraint and its applications in an incomplete market [J].
Peng, Shige ;
Xu, Mingyu .
BERNOULLI, 2010, 16 (03) :614-640
[27]   Backward stochastic differential equations with non-Lipschitz coefficients [J].
Wang, Ying ;
Huang, Zhen .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (12) :1438-1443
[28]  
Yong J., 1999, STOCHASTIC CONTROLS, P101, DOI DOI 10.1007/978-1-4612-1466-3