Some q-supercongruences from the Gasper and Rahman quadratic summation

被引:2
作者
Guo, Victor J. W. [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2023年 / 36卷 / 03期
关键词
q-Supercongruences; p-Adic Gamma function; Gasper and Rahman's quadratic summation; Creative microscoping;
D O I
10.1007/s13163-022-00442-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give four families of q-supercongruences modulo the square and cube of a cyclotomic polynomial from Gasper and Rahman's quadratic summation. As conclusions, we obtain four new supercongruences modulo p(2) or p(3), such as: for d >= 2, r >= 1 with gcd(d, r) = 1 and d + r odd, and any prime p equivalent to d + r (mod 2d) with p >= d + r, Sigma(p-1)(k=0)(3dk + r) (r/d)(d-r/d)k(r/2d)(k)(2)(1/2)k/k!(4)(d+2r/2d)k equivalent to 0 (mod p(3)), where (x)(n) = x(x + 1) . . . (x + n - 1) is the Pochhammer symbol. We also propose three related conjectures on q-supercongruences.
引用
收藏
页码:993 / 1002
页数:10
相关论文
共 19 条
[1]  
Gasper G., 2004, Encyclopedia of Mathematics and its Applications, V96
[2]   STRANGE EVALUATIONS OF HYPERGEOMETRIC-SERIES [J].
GESSEL, I ;
STANTON, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :295-308
[3]   A New Extension of the (A.2) Supercongruence of Van Hamme [J].
Guo, Victor J. W. .
RESULTS IN MATHEMATICS, 2022, 77 (03)
[4]   A FAMILY OF q-SUPERCONGRUENCES MODULO THE CUBE OF A CYCLOTOMIC POLYNOMIAL [J].
Guo, Victor J. W. ;
Schlosser, Michael J. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (02) :296-302
[5]   A q-microscope for supercongruences [J].
Guo, Victor J. W. ;
Zudilin, Wadim .
ADVANCES IN MATHEMATICS, 2019, 346 :329-358
[6]   SUPERCONGRUENCES AND TRUNCATED HYPERGEOMETRIC SERIES [J].
He, Bing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (02) :501-508
[7]   Proof of a q-supercongruence conjectured by Guo and Schlosser [J].
Li, Long ;
Wang, Su-Dan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
[8]   On the divisibility of sums of even powers of q-binomial coefficients [J].
Liu, Ji-Cai ;
Jiang, Xue-Ting .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
[9]   On a congruence involving q-Catalan numbers [J].
Liu, Ji-Cai .
COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) :211-215
[10]   Congruences on sums of q-binomial coefficients [J].
Liu, Ji-Cai ;
Petrov, Fedor .
ADVANCES IN APPLIED MATHEMATICS, 2020, 116 (116)