CRISPR/Cas9 targeted mutations of OsDSG1 gene enhanced salt tolerance in rice

被引:4
|
作者
Ly, Linh Khanh [1 ]
Ho, Tuong Manh [1 ]
Bui, Thao Phuong [1 ]
Nguyen, Linh Thi [1 ]
Phan, Quyen [1 ]
Le, Ngoc Thu [1 ]
Khuat, Luong Thi Mai [2 ]
Le, Linh Hung [2 ]
Chu, Ha Hoang [1 ,3 ]
Pham, Ngoc Bich [1 ,3 ]
Do, Phat Tien [1 ,3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Biotechnol, A10 Bldg, 18 Hoang Quoc Viet, Hanoi, Vietnam
[2] Agr Genet Inst, Hanoi, Vietnam
[3] Grad Univ Sci & Technol, Vietnam Acad Sci & Technol, Hanoi, Vietnam
关键词
Genome editing; Salinity tolerance; CRISPR/Cas9; OsDSG1; gene; Khang Dan 18; ORYZA-SATIVA SALT; MOLECULAR DISSECTION; STRESS TOLERANCE; SALINITY; LIGASE; REGULATOR; PROTEIN;
D O I
10.1007/s10142-024-01347-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Salinization is one of the leading causes of arable land shrinkage and rice yield decline, recently. Therefore, developing and utilizing salt-tolerant rice varieties have been seen as a crucial and urgent strategy to reduce the effects of saline intrusion and protect food security worldwide. In the current study, the CRISPR/Cas9 system was utilized to induce targeted mutations in the coding sequence of the OsDSG1, a gene involved in the ubiquitination pathway and the regulation of biochemical reactions in rice. The CRISPR/Cas9-induced mutations of the OsDSG1 were generated in a local rice cultivar and the mutant inheritance was validated at different generations. The OsDSG1 mutant lines showed an enhancement in salt tolerance compared to wild type plants at both germination and seedling stages indicated by increases in plant height, root length, and total fresh weight as well as the total chlorophyll and relative water contents under the salt stress condition. In addition, lower proline and MDA contents were observed in mutant rice as compared to wild type plants in the presence of salt stress. Importantly, no effect on seed germination and plant growth parameters was recorded in the CRISRP/Cas9-induced mutant rice under the normal condition. This study again indicates the involvement of the OsDSG1 gene in the salt resistant mechanism in rice and provides a potential strategy to enhance the tolerance of local rice varieties to the salt stress.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Segregation of genetic chimeras generated by CRISPR/Cas9 system in rice
    Lee, Sangyool
    Kim, Ju-Kon
    Choi, Yang Do
    Jang, Geupil
    PLANT BIOTECHNOLOGY REPORTS, 2019, 13 (01) : 35 - 42
  • [42] Lipid and polymer mediated CRISPR/Cas9 gene editing
    Gong, Yan
    Tian, Siyu
    Xuan, Yang
    Zhang, Shubiao
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (20) : 4369 - 4386
  • [43] Targeted Editing of the StPDS Gene using the CRISPR/Cas9 system in Tetraploid Potato
    Ma, Jie
    Zheng, Ai-Hong
    Zhou, Ping
    Yuan, Qiao
    Wu, Rui
    Chen, Chun-Yan
    Wu, Xian-Zhi
    Zhang, Fen
    Sun, Bo
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2019, 31 (07): : 482 - 490
  • [44] A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice
    Bin Ren
    Fang Yan
    Yongjie Kuang
    Na Li
    Dawei Zhang
    Honghui Lin
    Huanbin Zhou
    Science China(Life Sciences), 2017, (05) : 516 - 519
  • [45] Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail
    Lee, Joonbum
    Ma, Jisi
    Lee, Kichoon
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (27) : 13288 - 13292
  • [46] Engineered Metal-Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing
    Rabiee, Navid
    Rabiee, Mohammad
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2025, 8 (04) : 1028 - 1049
  • [47] Targeting TOR and SnRK1 Genes in Rice with CRISPR/Cas9
    Pathak, Bhuvan
    Maurya, Chandan
    Faria, Maria C.
    Alizada, Zahra
    Nandy, Soumen
    Zhao, Shan
    Jamsheer, Muhammed K.
    Srivastava, Vibha
    PLANTS-BASEL, 2022, 11 (11):
  • [48] Multigene Knockout Utilizing Off-Target Mutations of the CRISPR/Cas9 System in Rice
    Endo, Masaki
    Mikami, Masafumi
    Toki, Seiichi
    PLANT AND CELL PHYSIOLOGY, 2015, 56 (01) : 41 - 47
  • [49] Enhanced Integration of Large DNA Into E. coli Chromosome by CRISPR/Cas9
    Chung, Mu-En
    Yeh, I-Hsin
    Sung, Li-Yu
    Wu, Meng-Ying
    Chao, Yun-Peng
    Ng, I-Son
    Hu, Yu-Chen
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (01) : 172 - 183
  • [50] Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize
    Lee, Keunsub
    Zhang, Yingxiao
    Kleinstiver, Benjamin P.
    Guo, Jimmy A.
    Aryee, Martin J.
    Miller, Jonah
    Malzahn, Aimee
    Zarecor, Scott
    Lawrence-Dill, Carolyn J.
    Joung, J. Keith
    Qi, Yiping
    Wang, Kan
    PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (02) : 362 - 372