Convergence of nanomedicine and neutrophils for drug delivery

被引:22
作者
Yuan, Sichen [1 ,2 ,3 ]
Hu, Quanyin [1 ,2 ,3 ]
机构
[1] Univ Wisconsin Madison, Sch Pharm, Pharmaceut Sci Div, Madison, WI 53705 USA
[2] Univ Wisconsin Madison, Carbone Canc Ctr, Sch Med & Publ Hlth, Madison, WI 53705 USA
[3] Univ Wisconsin Madison, Wisconsin Ctr NanoBioSyst, Sch Pharm, Madison, WI 53705 USA
关键词
Nanotechnology; Neutrophil; Drug delivery; Cell therapy; MEMBRANE-CAMOUFLAGED NANOPARTICLES; STEALTH NANOPARTICLES; PHOTOTHERMAL THERAPY; EXTRACELLULAR TRAPS; MEDIATED DELIVERY; INFLAMMATION; MECHANISMS; LIPOSOMES; PHAGOCYTOSIS; RECRUITMENT;
D O I
10.1016/j.bioactmat.2024.01.022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophilbased nano -drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness. In this review, we summarized the benefits of combining neutrophils and nanotechnologies, the design principles and underlying mechanisms, and various applications in disease treatments. The challenges and prospects for neutrophil-based drug delivery systems were also discussed.
引用
收藏
页码:150 / 166
页数:17
相关论文
共 121 条
[1]   Low-molecular-weight polyethylene glycol improves survival in experimental sepsis [J].
Ackland, Gareth L. ;
Del Arroyo, Ana Gutierrez ;
Yao, Song T. ;
Stephens, Robert C. ;
Dyson, Alexander ;
Klein, Nigel J. ;
Singer, Mervyn ;
Gourine, Alexander V. .
CRITICAL CARE MEDICINE, 2010, 38 (02) :629-636
[2]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[3]   Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments [J].
Alghamri, Mahmoud S. ;
McClellan, Brandon L. ;
Hartlage, Margaret S. ;
Haase, Santiago ;
Faisal, Syed Mohd ;
Thalla, Rohit ;
Dabaja, Ali ;
Banerjee, Kaushik ;
Carney, Stephen V. ;
Mujeeb, Anzar A. ;
Olin, Michael R. ;
Moon, James J. ;
Schwendeman, Anna ;
Lowenstein, Pedro R. ;
Castro, Maria G. .
FRONTIERS IN PHARMACOLOGY, 2021, 12
[4]   Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size [J].
Antonescu, Costin N. ;
Aguet, Francois ;
Danuser, Gaudenz ;
Schmid, Sandra L. .
MOLECULAR BIOLOGY OF THE CELL, 2011, 22 (14) :2588-2600
[5]   Nanomaterial Interactions with Human Neutrophils [J].
Bisso, Paul W. ;
Gaglione, Stephanie ;
Guimaraes, Pedro P. G. ;
Mitchell, Michael J. ;
Langer, Robert .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (12) :4255-4265
[6]   The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis [J].
Brat, DJ ;
Bellail, AC ;
Van Meir, EG .
NEURO-ONCOLOGY, 2005, 7 (02) :122-133
[7]   Neutrophil extracellular traps kill bacteria [J].
Brinkmann, V ;
Reichard, U ;
Goosmann, C ;
Fauler, B ;
Uhlemann, Y ;
Weiss, DS ;
Weinrauch, Y ;
Zychlinsky, A .
SCIENCE, 2004, 303 (5663) :1532-1535
[8]  
Butterfield TA, 2006, J ATHL TRAINING, V41, P457
[9]   Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma [J].
Cao, Xi ;
Hu, Ying ;
Luo, Shi ;
Wang, Yuejing ;
Gong, Tao ;
Sun, Xun ;
Fu, Yao ;
Zhang, Zhirong .
ACTA PHARMACEUTICA SINICA B, 2019, 9 (03) :575-589
[10]   Harnessing the power of artificial intelligence to advance cell therapy [J].
Capponi, Sara ;
Daniels, Kyle G. .
IMMUNOLOGICAL REVIEWS, 2023, 320 (01) :147-165