Constrained Multiobjective Optimization via Multitasking and Knowledge Transfer

被引:57
作者
Ming, Fei [1 ]
Gong, Wenyin [1 ]
Wang, Ling [2 ]
Gao, Liang [3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Optimization; Statistics; Sociology; Multitasking; Convergence; Knowledge transfer; Constrained multiobjective optimization; evolutionary algorithm; evolutionary transfer optimization (ETO); knowledge transfer; multitasking; EVOLUTIONARY ALGORITHMS;
D O I
10.1109/TEVC.2022.3230822
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving constrained multiobjective optimization problems (CMOPs) with various features and challenges via evolutionary algorithms is very popular. Existing methods usually adopt an additional helper problem to simplify and solve them by divide and conquer. This article proposes a new multitasking framework for CMOPs, borrowing the idea of evolutionary multitasking optimization. The main contributions are: 1) a multitasking framework is proposed, where a CMOP is modeled as a multitasking optimization problem with three tasks. Then, it is solved by constraint-first, constraint-ignored, and constraint-relaxed multiobjective evolutionary algorithms; 2) a knowledge expression and a transfer strategy are devised to transfer the knowledge among the tasks; and 3) based on the proposed framework, a new two-stage algorithm is presented to solve CMOPs. The effectiveness of our approach is validated through experiments on four CMOP benchmark suites and 19 real-world CMOPs.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 58 条
[1]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[2]   Multifactorial Evolutionary Algorithm With Online Transfer Parameter Estimation: MFEA-II [J].
Bali, Kavitesh Kumar ;
Ong, Yew Soon ;
Gupta, Abhishek ;
Tan, Puay Siew .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (01) :69-83
[3]   The balance between proximity and diversity in multiobjective evolutionary algorithms [J].
Bosman, PAN ;
Thierens, D .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :174-188
[4]   A Multiobjective Multitask Optimization Algorithm Using Transfer Rank [J].
Chen, Hongyan ;
Liu, Hai-Lin ;
Gu, Fangqing ;
Tan, Kay Chen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (02) :237-250
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]  
Deb K., 1995, Complex Systems, V9, P115
[7]   Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems [J].
Fan, Zhun ;
Wang, Zhaojun ;
Li, Wenji ;
Yuan, Yutong ;
You, Yugen ;
Yang, Zhi ;
Sun, Fuzan ;
Ruan, Jie .
SWARM AND EVOLUTIONARY COMPUTATION, 2020, 54
[8]   An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions [J].
Fan, Zhun ;
Li, Wenji ;
Cai, Xinye ;
Huang, Han ;
Fang, Yi ;
You, Yugen ;
Mo, Jiajie ;
Wei, Caimin ;
Goodman, Erik .
SOFT COMPUTING, 2019, 23 (23) :12491-12510
[9]   Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit [J].
Fan, Zhun ;
Li, Wenji ;
Cai, Xinye ;
Li, Hui ;
Wei, Caimin ;
Zhang, Qingfu ;
Deb, Kalyanmoy ;
Goodman, Erik .
EVOLUTIONARY COMPUTATION, 2020, 28 (03) :339-378
[10]   Push and pull search for solving constrained multi-objective optimization problems [J].
Fan, Zhun ;
Li, Wenji ;
Cai, Xinye ;
Li, Hui ;
Wei, Caimin ;
Zhang, Qingfu ;
Deb, Kalyanmoy ;
Goodman, Erik .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 :665-679