Structural and biophysical analysis of a Haemophilus influenzae tripartite ATP-independent periplasmic (TRAP) transporter

被引:5
作者
Currie, Michael J. [1 ,2 ]
Davies, James S. [1 ,2 ,3 ]
Scalise, Mariafrancesca [4 ]
Gulati, Ashutosh [3 ]
Wright, Joshua D. [1 ,2 ]
Newton-Vesty, Michael C. [1 ,2 ]
Abeysekera, Gayan S. [1 ,2 ]
Subramanian, Ramaswamy [5 ]
Wahlgren, Weixiao Y. [6 ]
Friemann, Rosmarie [7 ]
Allison, Jane R. [8 ,9 ]
Mace, Peter D. [10 ]
Griffin, Michael D. W. [11 ]
Demeler, Borries [12 ,13 ]
Wakatsuki, Soichi [14 ,15 ]
Drew, David [3 ]
Indiveri, Cesare [4 ]
Dobson, Renwick C. J. [1 ,2 ,11 ]
North, Rachel A. [3 ,16 ]
机构
[1] Univ Canterbury, MacDiarmid Inst Adv Mat & Nanotechnol, Biomol Interact Ctr, Maurice Wilkins Ctr Biodiscovery, Christchurch, New Zealand
[2] Univ Canterbury, Sch Biol Sci, Christchurch, New Zealand
[3] Stockholm Univ, Dept Biochem & Biophys, Stockholm, Sweden
[4] Univ Calabria, Unit Biochem & Mol Biotechnol, Dept DiBEST Biol Ecol Sci Terra, Arcavacata Di Rende, Italy
[5] Purdue Univ, Bindley Biosci Ctr, Biol Sci & Biomed Engn, W Lafayette, IN 47907 USA
[6] Univ Gothenburg, Dept Chem & Mol Biol, Biochem & Struct Biol, Gothenburg, Sweden
[7] Univ Gothenburg, Ctr Antibiot Resistance Res CARe, Gothenburg, Sweden
[8] Univ Auckland, Digital Life Inst, Biomol Interact Ctr, Maurice Wilkins Ctr Mol Biodiscovery, Auckland, New Zealand
[9] Univ Auckland, Sch Biol Sci, Auckland, New Zealand
[10] Univ Otago, Sch Biomed Sci, Biochem Dept, Dunedin, New Zealand
[11] Univ Melbourne, Bio Mol Sci & Biotechnol Inst, ARC Ctr Cryoelectron Microscopy Membrane Prot, Dept Biochem & Pharmacol, Melbourne, Vic, Australia
[12] Univ Montana, Dept Chem & Biochem, Missoula, MT USA
[13] Univ Lethbridge, Dept Chem & Biochem, Lethbridge, AB, Canada
[14] SLAC Natl Accelerator Lab, Div Biol Sci, Menlo Pk, CA USA
[15] Stanford Univ, Sch Med, Dept Struct Biol, Stanford, CA USA
[16] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Sydney, NSW, Australia
来源
ELIFE | 2024年 / 12卷
关键词
sialic acid; Neu5Ac; protein-protein interaction; membrane transport proteins; transport mechanism; Other; SMALL-ANGLE SCATTERING; ANALYTICAL ULTRACENTRIFUGATION; OUTER-MEMBRANE; SEDIMENTATION-VELOCITY; CRYSTAL-STRUCTURE; BINDING-PROTEINS; CRYO-EM; MECHANISM; SUPERFAMILY; RESISTANCE;
D O I
10.7554/eLife.92307
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 & Aring; resolution (extending to 2.2 & Aring; at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 & Aring; resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (K-D) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.
引用
收藏
页数:26
相关论文
共 84 条
  • [61] 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM
    Punjani, Ali
    Fleet, David J.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (02)
  • [62] Punjani A, 2017, NAT METHODS, V14, P290, DOI [10.1038/NMETH.4169, 10.1038/nmeth.4169]
  • [63] A FUNCTIONAL SUPERFAMILY OF SODIUM/SOLUTE SYMPORTERS
    REIZER, J
    REIZER, A
    SAIER, MH
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON BIOMEMBRANES, 1994, 1197 (02): : 133 - 166
  • [64] Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes
    Ren, QH
    Paulsen, IT
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (03) : 190 - 201
  • [65] Membrane-anchored substrate binding proteins are deployed in secondary TAXI transporters
    Roden, Anja
    Engelin, Melanie K.
    Pos, Klaas M.
    Geertsma, Eric R.
    [J]. BIOLOGICAL CHEMISTRY, 2023, 404 (07) : 715 - 725
  • [66] Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity
    Rosa, Leonardo T.
    Bianconi, Matheus E.
    Thomas, Gavin H.
    Kelly, David J.
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2018, 8
  • [67] Analytical Ultracentrifugation Sedimentation Velocity for the Characterization of Detergent-Solubilized Membrane Proteins Ca++-ATPase and ExbB
    Salvay, Andres G.
    Santamaria, Monica
    le Maire, Marc
    Ebel, Christine
    [J]. JOURNAL OF BIOLOGICAL PHYSICS, 2007, 33 (5-6) : 399 - 419
  • [68] Studying Interactions of Drugs with Cell Membrane Nutrient Transporters: New Frontiers of Proteoliposome Nanotechnology
    Scalise, Mariafrancesca
    Galluccio, Michele
    Pochini, Lorena
    Console, Lara
    Barile, Maria
    Giangregorio, Nicola
    Tonazzi, Annamaria
    Indiveri, Cesare
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2017, 23 (26) : 3871 - 3883
  • [69] An updated structural classification of substrate-binding proteins
    Scheepers, Giel H.
    Lycklama a Nijeholt, Jelger A.
    Poolman, Bert
    [J]. FEBS LETTERS, 2016, 590 (23) : 4393 - 4401
  • [70] Schrodinger LLC, 2024, PYMOL MOL GRAPHICS S