Precision medicine enhances personalized medicine in cardiology

被引:0
作者
Hasenfuss, G. [1 ,2 ,3 ]
Schuster, A. [1 ,2 ]
Bergau, L. [1 ,2 ]
Toischer, K. [1 ,2 ]
机构
[1] Georg August Univ, Univ med Gottingen, Klin Kardiol & Pneumol, Herzzentrum Gottingen, D-37075 Gottingen, Germany
[2] Deutsch Zent Herz Kreislauf Forsch, Gottingen, Germany
[3] Univ Med Gottingen, Klin Kardiol & Pneumol, Herzzentrum Gottingen, Georg August Univ Robert Koch Str 40, D-37075 Gottingen, Germany
来源
INNERE MEDIZIN | 2024年 / 65卷 / 03期
关键词
Cardiac imaging; Digital technology/cardiology; Omics; Artificial intelligence; Hemodynamics; PRESERVED EJECTION FRACTION; MAGNETIC-RESONANCE; HEART-FAILURE;
D O I
10.1007/s00108-024-01663-w
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Personalized medicine and precision medicine, frequently used synonymously, shall be clearly differentiated. Accordingly, personalization in cardiac medicine is based on the clinical presentation of a patient, as well as his/her cardiovascular risk factors and comorbidities, electrocardiography, imaging, and biomarkers for myocardial load and ischemia. Personalization is based on large clinical trials with detailed subgroup analyses and is practiced on the basis of guidelines. Further in depth personalization is achieved by precision medicine, which is based on innovative imaging for myocardial structure, coronary morphology, and electrophysiology. From the clinical perspective, genome analyses are relevant for comparatively rare monogenetic cardiovascular diseases. While these as well as transcriptome and metabolome analyses play a significant role in cardiovascular research with great translation potential, they have not yet been broadly introduced in the diagnosis, prevention, and treatment of complex cardiovascular diseases. Furthermore, digital technologies have considerable potential in cardiovascular precision medicine. On the one hand, this is based on the frequency of the diseases with the availability of Big Data and, on the other hand, on the availability of bio-signals and sensors of those signals in cardiovascular diseases.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 37 条
  • [1] Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial
    Abraham, William T.
    Adamson, Philip B.
    Bourge, Robert C.
    Aaron, Mark F.
    Costanzo, Maria Rosa
    Stevenson, Lynne W.
    Strickland, Warren
    Neelagaru, Suresh
    Raval, Nirav
    Krueger, Steven
    Weiner, Stanislav
    Shavelle, David
    Jeffries, Bradley
    Yadav, Jay S.
    [J]. LANCET, 2011, 377 (9766) : 658 - 666
  • [2] ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure
    Akbilgic, Oguz
    Butler, Liam
    Karabayir, Ibrahim
    Chang, Patricia P.
    Kitzman, Dalane W.
    Alonso, Alvaro
    Chen, Lin Y.
    Soliman, Elsayed Z.
    [J]. EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04): : 626 - 634
  • [3] Al-Attar N, 2013, E J CARDIOL PRACT, V11
  • [4] Cardiac MRI: a central prognostic tool in myocardial fibrosis
    Ambale-Venkatesh, Bharath
    Lima, Joao A. C.
    [J]. NATURE REVIEWS CARDIOLOGY, 2015, 12 (01) : 18 - 29
  • [5] 2023 ESC Guidelines for the management of cardiomyopathies Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC)
    Arbelo, Elena
    Protonotarios, Alexandros
    Gimeno, Juan R.
    Arbustini, Eloisa
    Barriales-Villa, Roberto
    Basso, Cristina
    Bezzina, Connie R.
    Biagini, Elena
    Blom, Nico A.
    de Boer, Rudolf A.
    De Winter, Tim
    Elliott, Perry M.
    Flather, Marcus
    Garcia-Pavia, Pablo
    Haugaa, Kristina H.
    Ingles, Jodie
    Jurcut, Ruxandra Oana
    Klaassen, Sabine
    Limongelli, Giuseppe
    Loeys, Bart
    Mogensen, Jens
    Olivotto, Iacopo
    Pantazis, Antonis
    Sharma, Sanjay
    Van Tintelen, J. Peter
    Ware, James S.
    Kaski, Juan Pablo
    [J]. EUROPEAN HEART JOURNAL, 2023, 44 (37) : 3503 - 3626
  • [6] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [7] Exercise Stress Real-Time Cardiac Magnetic Resonance Imaging for Noninvasive Characterization of Heart Failure With Preserved Ejection Fraction The HFpEF-Stress Trial
    Backhaus, Soeren J.
    Lange, Torben
    George, Elisabeth F.
    Hellenkamp, Kristian
    Gertz, Roman J.
    Billing, Marcus
    Wachter, Rolf
    Steinmetz, Michael
    Kutty, Shelby
    Raaz, Uwe
    Lotz, Joachim
    Friede, Tim
    Uecker, Martin
    Hasenfuss, Gerd
    Seidler, Tim
    Schuster, Andreas
    [J]. CIRCULATION, 2021, 143 (15) : 1484 - 1498
  • [8] Baldus S, 2016, Dtsch Arztebl, V113, P27
  • [9] Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca2+/Calmodulin-Dependent Kinase II
    Bezzerides, Vassilios J.
    Caballero, Ana
    Wang, Suya
    Ai, Yulan
    Hylind, Robyn J.
    Lu, Fujian
    Heims-Waldron, Danielle A.
    Chambers, Kristina D.
    Zhang, Donghui
    Abrams, Dominic J.
    Pu, William T.
    [J]. CIRCULATION, 2019, 140 (05) : 405 - 419
  • [10] A New Initiative on Precision Medicine
    Collins, Francis S.
    Varmus, Harold
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (09) : 793 - 795