A multi-view ensemble model based on semi-supervised feature learning for small sample classification of PolSAR images

被引:0
作者
Darvishnezhad, Mohsen [1 ]
机构
[1] KN Toosi Univ Technol, Dept Elect Engn, Tehran, Iran
关键词
Polarimetric synthetic aperture radar image classification; small sample classification; self-supervised learning; ensemble learning; deep learning; DEEP FEATURE-EXTRACTION; SUPPORT VECTOR MACHINE; ATTENTION NETWORK; SCATTERING; COVER; DECOMPOSITION; AUTOENCODER; CNN;
D O I
10.1080/01431161.2024.2305627
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Classification with a few samples of training set has been a long-standing issue in the field of polarimetric synthetic aperture radar (PolSAR) image analysis and processing. In fact, one of the most important challenges of the PolSAR image classification task is the number of labelled samples. In essence, training network by utilizing just few numbers of training samples cannot be led to the reliable result since the neural network is so sensitive to the number of training samples. In addition, in the real PolSAR image classification task, the huge number of training samples is not accessible. On the other hand, classification performance using just small number of labelled samples is not an accurate result. So, in this paper, aiming at the small number of training samples of the PolSAR image classification task, a novel ensemble self-supervised feature-learning (ESSFL) model is designed. The designed ESSFL can automatically extract PolSAR features conducive to PolSAR image classification with a small number of training samples. In addition, it can significantly decrease the dependence of neural network algorithms on large labelled samples of training set. First, to utilize the spatial-polarimetric features of PolSAR data perfectly, the EfficientNet-B0 is presented and utilized as the main section of the deep learning (DL) model to extract DL features of PolSAR data. Then, using an optimization function that constrains the cross-correlation matrix of various distortions of each sample to the identity matrix, the designed deep learning model can obtain the effective features of homogeneous samples gathering together and heterogeneous samples separating from each other in a self-supervised manner. Moreover, two ensemble learning (EL) models, feature-level and view-level ensemble, are proposed to increase the feature extraction capability and classification result by jointly using spatial features at different scales and polarimetric information at different bands. Finally, the stack of the obtained features and the main polarimetric information of PolSAR data can be input into classifier for the classification of PolSAR data. In this paper we use two different classifiers, the first one is the Random Forest (RF) classifier and the second one is the Support Vector Machine (SVM) classifier. The advantages of SVM include that it can be used to avoid the difficulties of using linear functions in the high-dimensional feature space, and the optimization problem is transformed into dual convex quadratic programs that are so usable for an actual image classification task. In addition, among all the available classification methods, random forests provide one of the highest accuracies. The random forest technique can also handle big data with numerous variables running into thousands. In fact, it can automatically balance data sets when a class is more infrequent than other classes in the data that is so important for a real PolSAR image classification task. Experimental results on three well-known PolSAR data sets illustrate that the designed ESSFL can extract more discriminant features using the designed deep learning model. In the end, the experiments prove that the designed ESSFL has a significant classification performance compared with different deep learning models in the case of small number of training samples, and also it can achieve a better result in the case of large number of training samples by comparison with the most of the deep learning models.
引用
收藏
页码:981 / 1031
页数:51
相关论文
共 50 条
  • [1] ES2FL: Ensemble Self-Supervised Feature Learning for Small Sample Classification of Hyperspectral Images
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Ding, Lei
    Qiu, Chunping
    Li, Jia
    REMOTE SENSING, 2022, 14 (17)
  • [2] Semi-supervised classification of hyperspectral images based on multi-view consistency
    Liu, Bing
    Zuo, Xibing
    Yu, Anzhu
    Sun, Yifan
    Wang, Ruirui
    REMOTE SENSING LETTERS, 2023, 14 (05) : 479 - 490
  • [3] Semi-supervised Classification of Hyperspectral Images with Small Sample Sizes
    Aydemir, M. Said
    Bilgin, Gokhan
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 681 - 684
  • [4] Learning Deep Sparse Regularizers With Applications to Multi-View Clustering and Semi-Supervised Classification
    Wang, Shiping
    Chen, Zhaoliang
    Du, Shide
    Lin, Zhouchen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5042 - 5055
  • [5] Semi-Supervised Structured Subspace Learning for Multi-View Clustering
    Qin, Yalan
    Wu, Hanzhou
    Zhang, Xinpeng
    Feng, Guorui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1 - 14
  • [6] Weight-and-Universum-based semi-supervised multi-view learning machine
    Zhu, Changming
    Miao, Duoqian
    Zhou, Rigui
    Wei, Lai
    SOFT COMPUTING, 2020, 24 (14) : 10657 - 10679
  • [7] A Multi-View Integrated Ensemble for the Background Discrimination of Semi-Supervised Semantic Segmentation
    Gwak, Hyunmin
    Jeong, Yongho
    Kim, Chanyeong
    Lee, Yonghak
    Yang, Seongmin
    Kim, Sunghwan
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [8] SEMI-SUPERVISED SCENE CLASSIFICATION FOR REMOTE SENSING IMAGES BASED ON CNN AND ENSEMBLE LEARNING
    Dai, Xueyuan
    Wu, Xiaofeng
    Wang, Bin
    Zhang, Liming
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4732 - 4735
  • [9] Multichannel semi-supervised active learning for PolSAR image classification
    Hua, Wenqiang
    Zhang, Yurong
    Liu, Hongying
    Xie, Wen
    Jin, Xiaomin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 127
  • [10] Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning
    Wu, Zhihao
    Lin, Xincan
    Lin, Zhenghong
    Chen, Zhaoliang
    Bai, Yang
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8593 - 8606