Detonation Combustion of a Hydrogen-Air Mixture with Additives of Argon and Ozone

被引:0
|
作者
Levin, V. A. [1 ]
Zhuravskaya, T. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Sci Res Inst Mech, 1 Michurinskii Ave, Moscow 119192, Russia
关键词
detonation; stoichiometric hydrogen-air mixture; cellular detonation structure; argon; ozone; multiple obstacles; GASEOUS DETONATIONS; GAS; MECHANISM; CHANNELS; SCHEME; WAVES;
D O I
10.1007/s10891-023-02846-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
Using a detailed kinetic mechanism of chemical interaction, the effect of adding argon and ozone to a stoichiometric hydrogen-air mixture on the detonation wave parameters was studied numerically. It has been established that the mole fractions of the used additions can be chosen so that the cell size of the detonation wave in the resulting mixture will be close to the average cell size in a pure hydrogen-air mixture, with the wave velocity and temperature of the detonation products being reduced significantly. It has been found that the detonation wave in a mixture with additives in selected concentrations is more stable against perturbations caused by multiple obstacles (barriers) located in the channel than in the initial mixture. The found specific features make it possible to consider the introduction of the indicated additives into the combustible mixture as a mechanism that lowers the temperature in the detonation wave without a significant increase in the detonation cell size and that prevents the extinction of detonation combustion in a channel with a number of barriers.
引用
收藏
页码:1759 / 1768
页数:10
相关论文
共 50 条
  • [21] Study on the effects of geometry on the initiation characteristics of the oblique detonation wave for hydrogen-air mixture
    Qin, Qiongyao
    Zhang, Xiaobing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) : 17004 - 17014
  • [22] Propagation of hydrogen-air detonation in tube with obstacles
    Rudy, Wojciech
    Porowski, Rafal
    Teodorczyk, Andrzej
    JOURNAL OF POWER TECHNOLOGIES, 2011, 91 (03): : 122 - 129
  • [23] Supercomputing simulations of detonation of hydrogen-air mixtures
    Smirnov, N. N.
    Nikitin, V. F.
    Stamov, L. I.
    Altoukhov, D. I.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (34) : 11059 - 11074
  • [24] Effect of small additives of ozone and hydrogen peroxide on the induction-zone length of hydrogen-air mixtures in a one-dimensional model of a detonation wave
    A. ’E. Magzumov
    I. A. Kirillov
    V. D. Rusanov
    Combustion, Explosion and Shock Waves, 1998, 34 : 338 - 341
  • [25] Initiation of Detonation of a Hydrogen-Air Mixture due to Injection of Chemically Inert Solid Particles
    Tropin, D. A.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2023, 59 (06) : 678 - 685
  • [26] Influence of longitudinal obstacle spacing on the deflagration-to-detonation transition through a bank of obstacles in a hydrogen-air mixture
    Li, Min
    Xiao, Huahua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (38) : 14449 - 14463
  • [27] Safety of using hydrogen: Suppression of detonation in hydrogen-air mixtures
    Smirnov, N. N.
    Azatyan, V. V.
    Mikhalchenko, E. V.
    Smirnova, M. N.
    Stamov, L. I.
    Tyurenkova, V. V.
    ACTA ASTRONAUTICA, 2024, 224 : 69 - 81
  • [28] The effect of carbon monoxide on the detonation ability of the hydrogen-air mixture during shock wave focusing
    Khomik, S. V.
    Medvedev, S. P.
    Stamov, L. I.
    Smirnov, N. N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 122 : 35 - 43
  • [29] Numerical modeling of suppression of detonation waves in hydrogen-air mixture by system of inert particles clouds
    Tropin, Dmitry
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (66) : 28699 - 28709
  • [30] Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber
    Smirnov, N. N.
    Penyazkov, O. G.
    Sevrouk, K. L.
    Nikitin, V. F.
    Stamov, L., I
    Tyurenkova, V. V.
    ACTA ASTRONAUTICA, 2018, 149 : 77 - 92