Quantum Cost Optimization Algorithm for Entanglement-based Asymmetric Quantum Error Correction

被引:1
|
作者
Mummadi, Swathi [1 ,2 ]
Rudra, Bhawana [3 ]
机构
[1] Natl Inst Technol Karnataka, Dept Informat Technol, Mangalore 575025, Karnataka, India
[2] B V Raju Inst Technol, Dept Comp Sci & Engn, Medak 502313, Telangana, India
[3] Natl Inst Technol Karnataka, Dept Informat Technol, Mangalore 575025, Karnataka, India
关键词
Reversible computation; Quantum information; Quantum error correction; Entanglement purification; Reversible logic gates; Quantum cost;
D O I
10.1007/s10773-023-05497-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The importance of reversible operations has been increasing day by day to overcome the drawbacks of irreversible computation. Quantum computers perform operations exponentially faster by taking advantage of reversible operations. Reversible operations play an essential role in developing energy and cost-efficient circuits. The efficiency of a quantum circuit is measured in terms of Quantum cost and Quantum depth. In this paper, we propose an optimization algorithm for Entanglement-based Quantum error correction, which plays a crucial role in various applications like quantum teleportation, secure communications, quantum key distribution, etc. We performed the experiments using Qiskit and RCViewer+ tools. Qiskit tool is used to run the quantum algorithms and measure the quantum depth; the RCViewer+ tool is used to measure the quantum cost. The proposed algorithm optimizes the quantum cost and depth compared to the existing approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] IMPLEMENTATION OF UNITARY QUANTUM ERROR CORRECTION
    Tomita, Hiroyuki
    QUANTUM INFORMATION AND QUANTUM COMPUTING, 2013, 6 : 123 - 137
  • [42] Algebraic formulation of quantum error correction
    Beny, Cedric
    Kribs, David W.
    Pasieka, Aron
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 597 - 603
  • [43] On the Wilsonian Meaning of Quantum Error Correction
    Gomez, Cesar
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (02):
  • [44] Quantum error correction and reversible operations
    Caves, CM
    JOURNAL OF SUPERCONDUCTIVITY, 1999, 12 (06): : 707 - 718
  • [45] A Quantum Error-Correction Circuit Based on Cyclic Code
    Lü Hongjun
    ZHANG Zhike
    XIE Guangjun
    Wuhan University Journal of Natural Sciences, 2013, 18 (05) : 413 - 417
  • [46] An Algorithm for Minimization of Quantum Cost
    Banerjee, Anindita
    Pathak, Anirban
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (01): : 157 - 165
  • [47] Universal quantum computation and quantum error correction with ultracold atomic mixtures
    Kasper, Valentin
    Gonzalez-Cuadra, Daniel
    Hegde, Apoorva
    Xia, Andy
    Dauphin, Alexandre
    Huber, Felix
    Tiemann, Eberhard
    Lewenstein, Maciej
    Jendrzejewski, Fred
    Hauke, Philipp
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [48] Quantum computation and error correction based on continuous variable cluster states*
    Hao, Shuhong
    Deng, Xiaowei
    Liu, Yang
    Su, Xiaolong
    Xie, Changde
    Peng, Kunchi
    CHINESE PHYSICS B, 2021, 30 (06)
  • [49] Modeling coherent errors in quantum error correction
    Greenbaum, Daniel
    Dutton, Zachary
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01):
  • [50] The role of entropy in topological quantum error correction
    Beverland, Michael E.
    Brown, Benjamin J.
    Kastoryano, Michael J.
    Marolleau, Quentin
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,