Quantum Cost Optimization Algorithm for Entanglement-based Asymmetric Quantum Error Correction

被引:1
|
作者
Mummadi, Swathi [1 ,2 ]
Rudra, Bhawana [3 ]
机构
[1] Natl Inst Technol Karnataka, Dept Informat Technol, Mangalore 575025, Karnataka, India
[2] B V Raju Inst Technol, Dept Comp Sci & Engn, Medak 502313, Telangana, India
[3] Natl Inst Technol Karnataka, Dept Informat Technol, Mangalore 575025, Karnataka, India
关键词
Reversible computation; Quantum information; Quantum error correction; Entanglement purification; Reversible logic gates; Quantum cost;
D O I
10.1007/s10773-023-05497-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The importance of reversible operations has been increasing day by day to overcome the drawbacks of irreversible computation. Quantum computers perform operations exponentially faster by taking advantage of reversible operations. Reversible operations play an essential role in developing energy and cost-efficient circuits. The efficiency of a quantum circuit is measured in terms of Quantum cost and Quantum depth. In this paper, we propose an optimization algorithm for Entanglement-based Quantum error correction, which plays a crucial role in various applications like quantum teleportation, secure communications, quantum key distribution, etc. We performed the experiments using Qiskit and RCViewer+ tools. Qiskit tool is used to run the quantum algorithms and measure the quantum depth; the RCViewer+ tool is used to measure the quantum cost. The proposed algorithm optimizes the quantum cost and depth compared to the existing approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction
    John A. Holbrook
    David W. Kribs
    Raymond Laflamme
    Quantum Information Processing, 2003, 2 : 381 - 419
  • [32] Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction
    Holbrook, John A.
    Kribs, David W.
    Laflamme, Raymond
    QUANTUM INFORMATION PROCESSING, 2003, 2 (05) : 381 - 419
  • [33] Key ideas in quantum error correction
    Raussendorf, Robert
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1975): : 4541 - 4565
  • [34] Bosonic quantum error correction codes in superconducting quantum circuits
    Cai, Weizhou
    Ma, Yuwei
    Wang, Weiting
    Zou, Chang-Ling
    Sun, Luyan
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 50 - 67
  • [35] Quantum error correction: an introductory guide
    Roffe, Joschka
    CONTEMPORARY PHYSICS, 2019, 60 (03) : 226 - 245
  • [36] Breakthrough of error correction in quantum computing
    Heng, Fan
    ACTA PHYSICA SINICA, 2023, 72 (07)
  • [37] Quantum error correction with bosonic encoding
    Fan, Heng
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (28-29): : 4169 - 4172
  • [38] Quantum Error Correction and Reversible Operations
    Carlton M. Caves
    Journal of Superconductivity, 1999, 12 : 707 - 718
  • [39] Quantum error correction in crossbar architectures
    Helsen, Jonas
    Steudtner, Mark
    Veldhorst, Menno
    Wehner, Stephanie
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [40] Quantum convolutional error correction codes
    Chau, HF
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 314 - 324