Rapidly In Situ Cross-Linked Poly(butylene oxide) Electrolyte Interface Enabling Halide-Based All-Solid-State Lithium Metal Batteries

被引:24
作者
Luo, Jing [1 ]
Sun, Qian [1 ]
Liang, Jianwen [1 ]
Adair, Keegan [1 ]
Zhao, Feipeng [1 ]
Deng, Sixu [1 ]
Zhao, Yang [1 ]
Li, Ruying [1 ]
Huang, Huan [2 ]
Yang, Rong [3 ]
Zhao, Shangqian [3 ]
Wang, Jiantao [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Glabat Solid State Battery Inc, London, ON N6G 4X8, Canada
[3] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
MOLECULAR LAYER DEPOSITION; POLYMER ELECTROLYTES; SUPERIONIC CONDUCTORS; RAMAN-SPECTRA; CRYSTALLINE; INDIUM; COMPATIBILITY; SPECTROSCOPY; SCATTERING; CHEMISTRY;
D O I
10.1021/acsenergylett.3c01157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Halide-based solid-state halide electrolytes (SSEs) wererecentlyrevived as promising candidates for next-generation all-solid-statebatteries due to their superionic conductivity, direct compatibilitywith high-voltage cathodes, and scalable production. However, theincompatibility between halide SSEs and lithium metal anodes remainsa main challenge to achieve high energy density. Herein, we demonstratea thin cross-linked poly(butylene oxide) solid polymer electrolyte(xPBO SPE) interlayer on the superionic Li3InCl6 SSE to enable lithium metal compatibility. A rapid and solvent-freein situ cross-linking process is developed by reaction between a 0.5s pulse of trimethylaluminum vapor and the hydroxyl terminal groupsof poly(butylene oxide). The Li-Li symmetric cells using xPBO-SPE@Li3InCl6 demonstrate a highly stable cycling performanceover 1100 h and up to 1.0 mA cm(-2) and 1.0 mAh cm(-2). All-solid-state lithium metal battery (ASSLMB) performancewith a LiCoO2 cathode is presented. This new rapid cross-linkingstrategy shall inspire more possibilities for lithium metal anodeintegration in ASSLMBs.
引用
收藏
页码:3676 / 3684
页数:9
相关论文
共 50 条
[21]   Progress and perspective of interface design in garnet electrolyte-based all-solid-state batteries [J].
Feng, Junrun ;
Gao, Zhonghui ;
Sheng, Lin ;
Hao, Zhangxiang ;
Wang, Feng R. .
CARBON ENERGY, 2021, 3 (03) :385-409
[22]   Mixed-linker MOFs-derived cross-linked copolymer electrolyte enables high lithium mobility for dendrite-free all-solid-state batteries [J].
Zhou, Jia ;
Zeng, Xingfa ;
Dong, Linna ;
Chen, Liya ;
Wei, Xiangrong ;
Liu, Yang ;
Shi, Liyi ;
Yu, Le ;
Fu, Jifang .
CHEMICAL ENGINEERING JOURNAL, 2023, 466
[23]   A Silatrane:Molecule-Based Crystal Composite Solid-State Electrolyte for All-Solid-State Lithium Batteries [J].
Navarro-Suarez, Adriana M. ;
Johansson, Patrik .
BATTERIES & SUPERCAPS, 2019, 2 (11) :956-962
[24]   An Ion-Channel-Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for All-Solid-State Lithium-Metal Batteries [J].
Kang, Tae Woog ;
Lee, Jun-Hyeong ;
Lee, Jaewoo ;
Park, Jung Hyun ;
Shin, Jae-Hoon ;
Ju, Jong-Min ;
Lee, Hajin ;
Lee, Sang Uck ;
Kim, Jong-Ho .
ADVANCED MATERIALS, 2023, 35 (30)
[25]   The multi-scale dissipation mechanism of composite solid electrolyte based on nanofiber elastomer for all-solid-state lithium metal batteries [J].
Yu, Wen ;
Xiang, Hengying ;
Yue, Jianing ;
Feng, Xiaofan ;
Duan, Wenwen ;
Feng, Yang ;
Cheng, Bowen ;
Deng, Nanping ;
Kang, Weimin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 682 :1073-1084
[26]   A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries [J].
Wang, Changhong ;
Liang, Jianwen ;
Luo, Jing ;
Liu, Jue ;
Li, Xiaona ;
Zhao, Feipeng ;
Li, Ruying ;
Huang, Huan ;
Zhao, Shangqian ;
Zhang, Li ;
Wang, Jiantao ;
Sun, Xueliang .
SCIENCE ADVANCES, 2021, 7 (37)
[27]   Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries [J].
Li, Yu ;
Zhang, Dechao ;
Xu, Xijun ;
Wang, Zhuosen ;
Liu, Zhengbo ;
Shen, Jiadong ;
Liu, Jun ;
Zhu, Min .
JOURNAL OF ENERGY CHEMISTRY, 2021, 60 :32-60
[28]   In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries [J].
Chen, Huanhui ;
Cao, Xing ;
Huang, Moujie ;
Ren, Xiangzhong ;
Zhao, Yubin ;
Yu, Liang ;
Liu, Ya ;
Zhong, Liubiao ;
Qiu, Yejun .
JOURNAL OF ENERGY CHEMISTRY, 2024, 88 :282-292
[29]   One dimensional CeO2 nanorods/poly(ethylene oxide) solid composite electrolyte for all-solid-state lithium-ion batteries [J].
Guo, Yudi ;
Zhao, Erqing ;
Zhao, Xiaofang ;
Liu, Shuailei .
JOURNAL OF RARE EARTHS, 2024, 42 (03) :570-577
[30]   A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries [J].
Wang, Qinglei ;
Cui, Zili ;
Zhou, Qian ;
Shangguan, Xuehui ;
Du, Xiaofan ;
Dong, Shanmu ;
Qiao, Lixin ;
Huang, Suqi ;
Liu, Xiaochen ;
Tang, Kun ;
Zhou, Xinhong ;
Cui, Guanglei .
ENERGY STORAGE MATERIALS, 2020, 25 :756-763