Oligodendrocyte Transcription Factor 2 as a Potential Prognostic Biomarker of Glioblastoma: Kaplan-Meier Analysis and the Development of a Binary Predictive Model Based on Visually Accessible Rembrandt Image and Magnetic Resonance Imaging Radiomic Features

被引:1
作者
Mei, Nan [1 ]
Lu, Yiping [1 ]
Yang, Shan [1 ]
Jiang, Shenghong [1 ]
Ruan, Zhuoying [1 ]
Wang, Dongdong [1 ]
Liu, Xiujuan [2 ]
Ying, Yinwei [1 ]
Li, Xuanxuan [1 ]
Yin, Bo [1 ]
机构
[1] Fudan Univ, Huashan Hosp, Dept Radiol, 12 Middle Wulumuqi Rd, Shanghai 200040, Peoples R China
[2] Fudan Univ, Huashan Hosp, Dept Pathol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
glioblastoma; magnetic resonance imaging; oligodendrocyte transcription factor 2; radiogenomics; survival analysis; CENTRAL-NERVOUS-SYSTEM; ADJUVANT TEMOZOLOMIDE; METHYLATION STATUS; GENOMIC ANALYSIS; CLASSIFICATION; SURVIVAL; RADIOTHERAPY; OLIG2; DIFFERENTIATION; RADIOGENOMICS;
D O I
10.1097/RCT.0000000000001454
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveOligodendrocyte transcription factor 2 (OLIG2) is universally expressed in human glioblastoma (GB). Our study explores whether OLIG2 expression impacts GB patients' overall survival and establishes a machine learning model for OLIG2 level prediction in patients with GB based on clinical, semantic, and magnetic resonance imaging radiomic features.MethodsKaplan-Meier analysis was used to determine the optimal cutoff value of the OLIG2 in 168 GB patients. Three hundred thirteen patients enrolled in the OLIG2 prediction model were randomly divided into training and testing sets in a ratio of 7:3. The radiomic, semantic, and clinical features were collected for each patient. Recursive feature elimination (RFE) was used for feature selection. The random forest (RF) model was built and fine-tuned, and the area under the curve was calculated to evaluate the performance. Finally, a new testing set excluding IDH-mutant patients was built and tested in a predictive model using the fifth edition of the central nervous system tumor classification criteria.ResultsOne hundred nineteen patients were included in the survival analysis. Oligodendrocyte transcription factor 2 was positively associated with GB survival, with an optimal cutoff of 10% (P = 0.00093). One hundred thirty-four patients were eligible for the OLIG2 prediction model. An RFE-RF model based on 2 semantic and 21 radiomic signatures achieved areas under the curve of 0.854 in the training set, 0.819 in the testing set, and 0.825 in the new testing set.ConclusionsGlioblastoma patients with & LE;10% OLIG2 expression tended to have worse overall survival. An RFE-RF model integrating 23 features can predict the OLIG2 level of GB patients preoperatively, irrespective of the central nervous system classification criteria, further guiding individualized treatment.
引用
收藏
页码:650 / 658
页数:9
相关论文
共 48 条
[1]   Image Segmentation, Registration and Characterization in R with SimpleITK [J].
Beare, Richard ;
Lowekamp, Bradley ;
Yaniv, Ziv .
JOURNAL OF STATISTICAL SOFTWARE, 2018, 86 (08) :1-35
[2]   Expression of Olig2, Nestin, NogoA and AQP4 have no impact on overall survival in IDH-wildtype glioblastoma [J].
Behling, Felix ;
Barrantes-Freer, Alonso ;
Behnes, Carl Ludwig ;
Stockhammer, Florian ;
Rohde, Veit ;
Adel-Horowski, Antonia ;
Antonio Rodriguez-Villagra, Odir ;
Angel Barboza, Miguel ;
Brueck, Wolfgang ;
Lehmann, Ulrich ;
Stadelmann, Christine ;
Hartmann, Christian .
PLOS ONE, 2020, 15 (03)
[3]   Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma [J].
Bhat, Krishna P. L. ;
Balasubramaniyan, Veerakumar ;
Vaillant, Brian ;
Ezhilarasan, Ravesanker ;
Hummelink, Karlijn ;
Hollingsworth, Faith ;
Wani, Khalida ;
Heathcock, Lindsey ;
James, Johanna D. ;
Goodman, Lindsey D. ;
Conroy, Siobhan ;
Long, Lihong ;
Lelic, Nina ;
Wang, Suzhen ;
Gumin, Joy ;
Raj, Divya ;
Kodama, Yoshinori ;
Raghunathan, Aditya ;
Olar, Adriana ;
Joshi, Kaushal ;
Pelloski, Christopher E. ;
Heimberger, Amy ;
Kim, Se Hoon ;
Cahill, Daniel P. ;
Rao, Ganesh ;
Den Dunnen, Wilfred F. A. ;
Boddeke, Hendrikus W. G. M. ;
Phillips, Heidi S. ;
Nakano, Ichiro ;
Lang, Frederick F. ;
Colman, Howard ;
Sulman, Erik P. ;
Aldape, Kenneth .
CANCER CELL, 2013, 24 (03) :331-346
[4]   Radiogenomics: bridging imaging and genomics [J].
Bodalal, Zuhir ;
Trebeschi, Stefano ;
Nguyen-Kim, Thi Dan Linh ;
Schats, Winnie ;
Beets-Tan, Regina .
ABDOMINAL RADIOLOGY, 2019, 44 (06) :1960-1984
[5]   Prognostic impact of glioblastoma stem cell markers OLIG2 and CCND2 [J].
Bouchart, Christelle ;
Trepant, Anne-Laure ;
Hein, Matthieu ;
Van Gestel, Dirk ;
Demetter, Pieter .
CANCER MEDICINE, 2020, 9 (03) :1069-1078
[6]   Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells [J].
Bouvier, C ;
Bartoli, C ;
Aguirre-Cruz, L ;
Virard, I ;
Colin, C ;
Fernandez, C ;
Gouvernet, J ;
Figarella-Branger, D .
JOURNAL OF NEUROSURGERY, 2003, 99 (02) :344-350
[7]   Prognostic value of contrast enhancement and FLAIR for survival in newly diagnosed glioblastoma treated with and without bevacizumab: results from ACRIN 6686 [J].
Boxerman, Jerrold L. ;
Zhang, Zheng ;
Safriel, Yair ;
Rogg, Jeffrey M. ;
Wolf, Ronald L. ;
Mohan, Suyash ;
Marques, Helga ;
Sorensen, A. Gregory ;
Gilbert, Mark R. ;
Barboriak, Daniel P. .
NEURO-ONCOLOGY, 2018, 20 (10) :1400-1410
[8]   Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J].
Brat, Daniel J. ;
Verhaak, Roel G. W. ;
Al-dape, Kenneth D. ;
Yung, W. K. Alfred ;
Salama, Sofie R. ;
Cooper, Lee A. D. ;
Rheinbay, Esther ;
Miller, C. Ryan ;
Vitucci, Mark ;
Morozova, Olena ;
Robertson, A. Gordon ;
Noushmehr, Houtan ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Akbani, Rehan ;
Huse, Jason T. ;
Ciriello, Giovanni ;
Poisson, Laila M. ;
Barnholtz-Sloan, Jill S. ;
Berger, Mitchel S. ;
Brennan, Cameron ;
Colen, Rivka R. ;
Colman, Howard ;
Flanders, Adam E. ;
Giannini, Caterina ;
Grifford, Mia ;
Iavarone, Antonio ;
Jain, Rajan ;
Joseph, Isaac ;
Kim, Jaegil ;
Kasaian, Katayoon ;
Mikkelsen, Tom ;
Murray, Bradley A. ;
O'Neill, Brian Patrick ;
Pachter, Lior ;
Parsons, Donald W. ;
Sougnez, Carrie ;
Sulman, Erik P. ;
Vandenberg, Scott R. ;
Van Meir, Erwin G. ;
von Deimling, Andreas ;
Zhang, Hailei ;
Crain, Daniel ;
Lau, Kevin ;
Mallery, David ;
Morris, Scott ;
Paulauskis, Joseph ;
Penny, Robert ;
Shelton, Troy ;
Sherman, Mark .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2481-2498
[9]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[10]   Prediction of survival with multi-scale radiomic analysis in glioblastoma patients [J].
Chaddad, Ahmad ;
Sabri, Siham ;
Niazi, Tamim ;
Abdulkarim, Bassam .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (12) :2287-2300