Recurrent Residual Dual Attention Network for Airborne Laser Scanning Point Cloud Semantic Segmentation

被引:26
作者
Zeng, Tao [1 ]
Luo, Fulin [2 ]
Guo, Tan [3 ]
Gong, Xiuwen [4 ]
Xue, Jingyun [1 ]
Li, Hanshan [1 ]
机构
[1] Xian Technol Univ, Sch Mechatron Engn, Xian 710021, Peoples R China
[2] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[4] Univ Sydney, Fac Engn, Sydney, NSW 2006, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Attention mechanism; encoder-decoder struc-ture; kernel point convolution (KPConv); point cloud semantic segmentation; recurrent residual structure; CLASSIFICATION;
D O I
10.1109/TGRS.2023.3285207
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for complex laser scanning conditions. Therefore, we rethink KPConv and propose a recurrent residual dual attention network (RRDAN) based on the encoder-decoder structure for the semantic segmentation of ALS point cloud data. In the encoder stage, we design an attention KPConv (AKPConv) block by using a scaling factor of batch normalization to highlight the significant channel information. Then, we use the AKPConv block to develop a recurrent residual kernel attention (RRKA) module to iteratively aggregate the local neighborhood features. In the decoder stage, we design a global and local channel attention (GLCA) module with global connection and local 1-D convolution to interact the global and local information after fusing the upsampled high-level representations and the skip-connected low-level features. In addition, to reduce the influence of the long-tailed distribution of reflection intensity, we apply gamma transformation to correct the data as a normal distribution. The proposed RRDAN can achieve diversified feature aggregation to implement the refined semantic segmentation of ALS point clouds. We evaluate our method on three ALS datasets (i.e., ISPRS, DCF2019, and LASDU) to demonstrate its performance compared to a few advanced methods. The code is available at https://github.com/SC-shendazt/RRDAN.
引用
收藏
页数:14
相关论文
共 48 条
[1]   Semantic Stereo for Incidental Satellite Images [J].
Bosch, Marc ;
Foster, Kevin ;
Christie, Gordon ;
Wang, Sean ;
Hager, Gregory D. ;
Brown, Myron .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :1524-1532
[2]   Knowledge Distillation with the Reused Teacher Classifier [J].
Chen, Defang ;
Mei, Jian-Ping ;
Zhang, Hailin ;
Wang, Can ;
Feng, Yan ;
Chen, Chun .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :11923-11932
[3]   TransRVNet: LiDAR Semantic Segmentation With Transformer [J].
Cheng, Hui-Xian ;
Han, Xian-Feng ;
Xiao, Guo-Qiang .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) :5895-5907
[4]   (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network [J].
Cheng, Ran ;
Razani, Ryan ;
Taghavi, Ehsan ;
Li, Enxu ;
Liu, Bingbing .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12542-12551
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]   LFT-Net: Local Feature Transformer Network for Point Clouds Analysis [J].
Gao, Yongbin ;
Liu, Xuebing ;
Li, Jun ;
Fang, Zhijun ;
Jiang, Xiaoyan ;
Huq, Kazi Mohammed Saidul .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) :2158-2168
[7]   Deep Learning for 3D Point Clouds: A Survey [J].
Guo, Yulan ;
Wang, Hanyun ;
Hu, Qingyong ;
Liu, Hao ;
Liu, Li ;
Bennamoun, Mohammed .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) :4338-4364
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[9]   Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling [J].
Hu, Qingyong ;
Yang, Bo ;
Xie, Linhai ;
Rosa, Stefano ;
Guo, Yulan ;
Wang, Zhihua ;
Trigoni, Niki ;
Markham, Andrew .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :8338-8354
[10]   GraNet: Global relation-aware attentional network for semantic segmentation of ALS point clouds [J].
Huang, Rong ;
Xu, Yusheng ;
Stilla, Uwe .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 177 :1-20