Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride

被引:25
作者
Al-Juboori, Ali [1 ,2 ]
Zeng, Helen Zhi Jie [1 ]
Nguyen, Minh Anh Phan [1 ]
Ai, Xiaoyu [2 ]
Laucht, Arne [2 ]
Solntsev, Alexander [1 ]
Toth, Milos [1 ,3 ]
Malaney, Robert [2 ]
Aharonovich, Igor [1 ,3 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia
[2] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[3] Univ Technol Sydney, Fac Sci, ARC Ctr Excellence Transformat Meta Opt Syst, Ultimo, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
BB84; hexagonal boron nitride; quantum key distribution; single photon; CRYPTOGRAPHY; EFFICIENCY;
D O I
10.1002/qute.202300038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) is considered the most immediate application to be widely implemented among a variety of potential quantum technologies. QKD enables sharing secret keys between distant users by using photons as information carriers. An ongoing endeavor is to implement these protocols in practice in a robust, and compact manner so as to be efficiently deployable in a range of real-world scenarios. Single photon sources (SPS) in solid-state materials are prime candidates in this respect. This article demonstrates a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride, operating in free-space. Employing an easily interchangeable photon source system, keys with one million bits length, and a secret key of approximately 70000 bits, at a quantum bit error rate of 6%, with & epsilon;-security of 10(-10) are generated. This study demonstrates the first proof of concept finite-key BB84 QKD system realized with hBN defects.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Quantum Emitters in Hexagonal Boron Nitride [J].
Aharonovich, Igor ;
Tetienne, Jean-Philippe ;
Toth, Milos .
NANO LETTERS, 2022, 22 (23) :9227-9235
[2]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/NPHOTON.2016.186, 10.1038/nphoton.2016.186]
[3]  
[Anonymous], TYPOGRAPHICAL ERROR
[4]  
[Anonymous], Random Number Generator
[5]  
Bashar M., 2009, 2009 INT C COMP AUT
[6]   Daylight entanglement-based quantum key distribution with a quantum dot source [J].
Basset, F. Basso ;
Valeri, M. ;
Neuwirth, J. ;
Polino, E. ;
Rota, M. B. ;
Poderini, D. ;
Pardo, C. ;
Rodari, G. ;
Roccia, E. ;
da Silva, S. F. Covre ;
Ronco, G. ;
Spagnolo, N. ;
Rastelli, A. ;
Carvacho, G. ;
Sciarrino, F. ;
Trotta, R. .
QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02)
[7]   Quantum key distribution with entangled photons generated on demand by a quantum dot [J].
Basset, Francesco Basso ;
Valeri, Mauro ;
Roccia, Emanuele ;
Muredda, Valerio ;
Poderini, Davide ;
Neuwirth, Julia ;
Spagnolo, Nicolo ;
Rota, Michele B. ;
Carvacho, Gonzalo ;
Sciarrino, Fabio ;
Trotta, Rinaldo .
SCIENCE ADVANCES, 2021, 7 (12)
[8]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[9]  
Bourgoin J.-P., 2015, PHYS REV A, V92, P5
[10]   Enhancing quantum cryptography with quantum dot single-photon sources [J].
Bozzio, Mathieu ;
Vyvlecka, Michal ;
Cosacchi, Michael ;
Nawrath, Cornelius ;
Seidelmann, Tim ;
Loredo, Juan C. ;
Portalupi, Simone L. ;
Axt, Vollrath M. ;
Michler, Peter ;
Walther, Philip .
NPJ QUANTUM INFORMATION, 2022, 8 (01)