A hybrid method for density power divergence minimization with application to robust univariate location and scale estimation

被引:1
作者
Anum, Andrews T. [1 ]
Pokojovy, Michael [1 ,2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
基金
美国国家科学基金会;
关键词
Minimum density power divergence estimator; Rousseeuw's Minimum Covariance Determinant estimator (MCD); gradient descent; Armijo rule; Newton's method; MULTIVARIATE OUTLIER DETECTION; HYPOTHESIS; ALGORITHM; MODELS;
D O I
10.1080/03610926.2023.2209347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a new globally convergent optimization method for solving a constrained minimization problem underlying the minimum density power divergence estimator for univariate Gaussian data in the presence of outliers. Our hybrid procedure combines classical Newton's method with a gradient descent iteration equipped with a step control mechanism based on Armijo's rule to ensure global convergence. Extensive simulations comparing the resulting estimation procedure with the more prominent robust competitor, Minimum Covariance Determinant (MCD) estimator, across a wide range of breakdown point values suggest improved efficiency of our method. Application to estimation and inference for a real-world dataset is also given.
引用
收藏
页码:5186 / 5209
页数:24
相关论文
共 49 条
[41]   AN AUTOMATIC METHOD FOR FINDING THE GREATEST OR LEAST VALUE OF A FUNCTION [J].
ROSENBROCK, HH .
COMPUTER JOURNAL, 1960, 3 (03) :175-184
[42]  
Rousseeuw P. J., 1985, MATH STAT APPL, P283
[43]   ALTERNATIVES TO THE MEDIAN ABSOLUTE DEVIATION [J].
ROUSSEEUW, PJ ;
CROUX, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) :1273-1283
[44]   A fast algorithm for the minimum covariance determinant estimator [J].
Rousseeuw, PJ ;
Van Driessen, K .
TECHNOMETRICS, 1999, 41 (03) :212-223
[45]   LEAST MEDIAN OF SQUARES REGRESSION [J].
ROUSSEEUW, PJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (388) :871-880
[46]  
Small C. G., 2003, NUMERICAL METHODS NO
[47]  
Stahel W.A., 1981, THESIS ETH ZURICH
[48]  
Van Buuren S., 2018, FLEXIBLE IMPUTATION, DOI DOI 10.1201/B11826
[49]   Simple and globally convergent methods for accelerating the convergence of any EM algorithm [J].
Varadhan, Ravi ;
Roland, Christophe .
SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) :335-353