A hybrid method for density power divergence minimization with application to robust univariate location and scale estimation

被引:1
作者
Anum, Andrews T. [1 ]
Pokojovy, Michael [1 ,2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
基金
美国国家科学基金会;
关键词
Minimum density power divergence estimator; Rousseeuw's Minimum Covariance Determinant estimator (MCD); gradient descent; Armijo rule; Newton's method; MULTIVARIATE OUTLIER DETECTION; HYPOTHESIS; ALGORITHM; MODELS;
D O I
10.1080/03610926.2023.2209347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a new globally convergent optimization method for solving a constrained minimization problem underlying the minimum density power divergence estimator for univariate Gaussian data in the presence of outliers. Our hybrid procedure combines classical Newton's method with a gradient descent iteration equipped with a step control mechanism based on Armijo's rule to ensure global convergence. Extensive simulations comparing the resulting estimation procedure with the more prominent robust competitor, Minimum Covariance Determinant (MCD) estimator, across a wide range of breakdown point values suggest improved efficiency of our method. Application to estimation and inference for a real-world dataset is also given.
引用
收藏
页码:5186 / 5209
页数:24
相关论文
共 49 条
[1]  
[Anonymous], 2006, Robust Statistics: Theory and Methods
[2]  
Avriel M., 2003, Nonlinear Programming: Analysis and Methods
[3]   MINIMUM DISPARITY ESTIMATION FOR CONTINUOUS MODELS - EFFICIENCY, DISTRIBUTIONS AND ROBUSTNESS [J].
BASU, A ;
LINDSAY, BG .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1994, 46 (04) :683-705
[4]  
Basu A, 2018, SANKHYA SER B, V80, P222
[5]   Testing statistical hypotheses based on the density power divergence [J].
Basu, A. ;
Mandal, A. ;
Martin, N. ;
Pardo, L. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (02) :319-348
[6]   Robust and efficient estimation by minimising a density power divergence [J].
Basu, A ;
Harris, IR ;
Hjort, NL ;
Jones, MC .
BIOMETRIKA, 1998, 85 (03) :549-559
[7]   A Wald-type test statistic for testing linear hypothesis in logistic regression models based on minimum density power divergence estimator [J].
Basu, Ayanendranath ;
Ghosh, Abhik ;
Mandal, Abhijit ;
Martin, Nirian ;
Pardo, Leandro .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02) :2741-2772
[8]   MINIMUM HELLINGER DISTANCE ESTIMATES FOR PARAMETRIC MODELS [J].
BERAN, R .
ANNALS OF STATISTICS, 1977, 5 (03) :445-463
[9]   The complexity of computing the MCD-estimator [J].
Bernholt, T ;
Fischer, P .
THEORETICAL COMPUTER SCIENCE, 2004, 326 (1-3) :383-398
[10]  
Boyd S., 2004, Convex Optimization, DOI 10.1017/CBO9780511804441