From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment

被引:285
作者
Swanson, Kyle [1 ]
Wu, Eric [2 ]
Zhang, Angela [3 ]
Alizadeh, Ash A. [4 ]
Zou, James [1 ,2 ,5 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Genet, Stanford, CA USA
[4] Stanford Univ, Dept Med, Stanford, CA USA
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE; GENE-EXPRESSION; LUNG-CANCER; SKIN-CANCER; DEEP; SYSTEM; CLASSIFICATION; VALIDATION; BIOPSIES; DENSITY;
D O I
10.1016/j.cell.2023.01.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient out-comes, and inform treatment planning. Here, we review recent applications of ML across the clinical oncology workflow. We review how these techniques are applied to medical imaging and to molecular data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design. We discuss key considerations in developing ML for the distinct challenges posed by imaging and molecular data. Finally, we examine ML models approved for cancer-related patient usage by regulatory agencies and discuss approaches to improve the clinical usefulness of ML.
引用
收藏
页码:1772 / 1791
页数:20
相关论文
共 139 条
[51]   Circulating Tumor DNA in Stage III Colorectal Cancer, beyond Minimal Residual Disease Detection, toward Assessment of Adjuvant Therapy Efficacy and Clinical Behavior of Recurrences [J].
Henriksen, Tenna Vesterman ;
Tarazona, Noelia ;
Frydendahl, Amanda ;
Reinert, Thomas ;
Gimeno-Valiente, Francisco ;
Antonio Carbonell-Asins, Juan ;
Sharma, Shruti ;
Renner, Derrick ;
Hafez, Dina ;
Roda, Desamparados ;
Huerta, Marisol ;
Rosello, Susana ;
Madsen, Anders Husted ;
Love, Uffe S. ;
Andersen, Per Vadgaard ;
Thorlacius-Ussing, Ole ;
Iversen, Lene Hjerrild ;
Gotschalck, Kare Andersson ;
Sethi, Himanshu ;
Aleshin, Alexey ;
Cervantes, Andres ;
Andersen, Claus Lindbjerg .
CLINICAL CANCER RESEARCH, 2022, 28 (03) :507-517
[52]   An Artificial Intelligence-Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study [J].
Homayounieh, Fatemeh ;
Digumarthy, Subba ;
Ebrahimian, Shadi ;
Rueckel, Johannes ;
Hoppe, Boj Friedrich ;
Sabel, Bastian Oliver ;
Conjeti, Sailesh ;
Ridder, Karsten ;
Sistermanns, Markus ;
Wang, Lei ;
Preuhs, Alexander ;
Ghesu, Florin ;
Mansoor, Awais ;
Moghbel, Mateen ;
Botwin, Ariel ;
Singh, Ramandeep ;
Cartmell, Samuel ;
Patti, John ;
Huemmer, Christian ;
Fieselmann, Andreas ;
Joerger, Clemens ;
Mirshahzadeh, Negar ;
Muse, Victorine ;
Kalra, Mannudeep .
JAMA NETWORK OPEN, 2021, 4 (12)
[53]   Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study [J].
Hosny, Ahmed ;
Bitterman, Danielle S. ;
Guthier, Christian V. ;
Qian, Jack M. ;
Roberts, Hannah ;
Perni, Subha ;
Saraf, Anurag ;
Peng, Luke C. ;
Pashtan, Itai ;
Ye, Zezhong ;
Kann, Benjamin H. ;
Kozono, David E. ;
Christiani, David ;
Catalano, Paul J. ;
Aerts, Hugo J. W. L. ;
Mak, Raymond H. .
LANCET DIGITAL HEALTH, 2022, 4 (09) :E657-E666
[54]   Artificial intelligence in radiology [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Quackenbush, John ;
Schwartz, Lawrence H. ;
Aerts, Hugo J. W. L. .
NATURE REVIEWS CANCER, 2018, 18 (08) :500-510
[55]   Comparison of rates of safety issues and reporting of trial outcomes for medical devices approved in the European Union and United States: cohort study [J].
Hwang, Thomas J. ;
Sokolov, Elisaveta ;
Franklin, Jessica M. ;
Kesselheim, Aaron S. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
[56]   Predicting tumour mutational burden from histopathological images using multiscale deep learning [J].
Jain, Mika S. ;
Massoud, Tarik F. .
NATURE MACHINE INTELLIGENCE, 2020, 2 (06) :356-362
[57]   Evaluation of cell-free DNA approaches for multi-cancer early detection [J].
Jamshidi, Arash ;
Liu, Minetta C. ;
Klein, Eric A. ;
Venin, Oliver ;
Hubbell, Earl ;
Beausang, John F. ;
Gross, Samuel ;
Melton, Collin ;
Fields, Alexander P. ;
Liu, Qinwen ;
Zhang, Nan ;
Fung, Eric T. ;
Kurtzman, Kathryn N. ;
Amini, Hamed ;
Betts, Craig ;
Civello, Daniel ;
Freese, Peter ;
Calef, Robert ;
Davydov, Konstantin ;
Fayzullina, Saniya ;
Hou, Chenlu ;
Jiang, Roger ;
Jung, Byoungsok ;
Tang, Susan ;
Demas, Vasiliki ;
Newman, Joshua ;
Sakarya, Onur ;
Scott, Eric ;
Shenoy, Archana ;
Shojaee, Seyedmehdi ;
Steffen, Kristan K. ;
Nicula, Virgil ;
Chien, Tom C. ;
Bagaria, Siddhartha ;
Hunkapiller, Nathan ;
Desai, Mohini ;
Dong, Zhao ;
Richards, Donald A. ;
Yeatman, Timothy J. ;
Cohn, Allen L. ;
Thiel, David D. ;
Berry, Donald A. ;
Tummala, Mohan K. ;
MCIntyre, Kristi ;
Sekeres, Mikkael A. ;
Bryce, Alan ;
Aravanis, Alexander M. ;
V. Seiden, Michael ;
Swanton, Charles .
CANCER CELL, 2022, 40 (12) :1537-+
[58]  
Jiao W, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-019-13825-8, 10.1038/s41467-020-14779-y]
[59]   Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer [J].
Joo, Sunghoon ;
Ko, Eun Sook ;
Kwon, Soonhwan ;
Jeon, Eunjoo ;
Jung, Hyungsik ;
Kim, Ji-Yeon ;
Chung, Myung Jin ;
Im, Young-Hyuck .
SCIENTIFIC REPORTS, 2021, 11 (01)
[60]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+