From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment

被引:285
作者
Swanson, Kyle [1 ]
Wu, Eric [2 ]
Zhang, Angela [3 ]
Alizadeh, Ash A. [4 ]
Zou, James [1 ,2 ,5 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Genet, Stanford, CA USA
[4] Stanford Univ, Dept Med, Stanford, CA USA
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE; GENE-EXPRESSION; LUNG-CANCER; SKIN-CANCER; DEEP; SYSTEM; CLASSIFICATION; VALIDATION; BIOPSIES; DENSITY;
D O I
10.1016/j.cell.2023.01.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient out-comes, and inform treatment planning. Here, we review recent applications of ML across the clinical oncology workflow. We review how these techniques are applied to medical imaging and to molecular data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design. We discuss key considerations in developing ML for the distinct challenges posed by imaging and molecular data. Finally, we examine ML models approved for cancer-related patient usage by regulatory agencies and discuss approaches to improve the clinical usefulness of ML.
引用
收藏
页码:1772 / 1791
页数:20
相关论文
共 139 条
[91]   Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study [J].
Oakden-Rayner, Lauren ;
Gale, William ;
Bonham, Thomas A. ;
Lungren, Matthew P. ;
Carneiro, Gustavo ;
Bradley, Andrew P. ;
Palmer, Lyle J. .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E351-E358
[92]   Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool [J].
Pacile, Serena ;
Lopez, January ;
Chone, Pauline ;
Bertinotti, Thomas ;
Grouin, Jean Marie ;
Fillard, Pierre .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (06) :1-9
[93]  
Pantanowitz L, 2020, LANCET DIGIT HEALTH, V2, pE407, DOI 10.1016/S2589-7500(20)30159-X
[94]   Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden [J].
Peneder, Peter ;
Stutz, Adrian M. ;
Surdez, Didier ;
Krumbholz, Manuela ;
Semper, Sabine ;
Chicard, Mathieu ;
Sheffield, Nathan C. ;
Pierron, Gaelle ;
Lapouble, Eve ;
Totzl, Marcus ;
Erguner, Bekir ;
Barreca, Daniele ;
Rendeiro, Andre F. ;
Agaimy, Abbas ;
Boztug, Heidrun ;
Engstler, Gernot ;
Dworzak, Michael ;
Bernkopf, Marie ;
Taschner-Mandl, Sabine ;
Ambros, Inge M. ;
Myklebost, Ola ;
Marec-Berard, Perrine ;
Burchill, Susan Ann ;
Brennan, Bernadette ;
Strauss, Sandra J. ;
Whelan, Jeremy ;
Schleiermacher, Gudrun ;
Schaefer, Christiane ;
Dirksen, Uta ;
Hutter, Caroline ;
Boye, Kjetil ;
Ambros, Peter F. ;
Delattre, Olivier ;
Metzler, Markus ;
Bock, Christoph ;
Tomazou, Eleni M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[95]   Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States [J].
Pesapane, Filippo ;
Volonte, Caterina ;
Codari, Marina ;
Sardanelli, Francesco .
INSIGHTS INTO IMAGING, 2018, 9 (05) :745-753
[96]   Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning [J].
Qian, Xuejun ;
Pei, Jing ;
Zheng, Hui ;
Xie, Xinxin ;
Yan, Lin ;
Zhang, Hao ;
Han, Chunguang ;
Gao, Xiang ;
Zhang, Hanqi ;
Zheng, Weiwei ;
Sun, Qiang ;
Lu, Lu ;
Shung, K. Kirk .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) :522-+
[97]   Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies [J].
Raciti, Patricia ;
Sue, Jillian ;
Ceballos, Rodrigo ;
Godrich, Ran ;
Kunz, Jeremy D. ;
Kapur, Supriya ;
Reuter, Victor ;
Grady, Leo ;
Kanan, Christopher ;
Klimstra, David S. ;
Fuchs, Thomas J. .
MODERN PATHOLOGY, 2020, 33 (10) :2058-2066
[98]   Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial [J].
Repici, Alessandro ;
Badalamenti, Matteo ;
Maselli, Roberta ;
Correale, Loredana ;
Radaelli, Franco ;
Rondonotti, Emanuele ;
Ferrara, Elisa ;
Spadaccini, Marco ;
Alkandari, Asma ;
Fugazza, Alessandro ;
Anderloni, Andrea ;
Galtieri, Piera Alessia ;
Pellegatta, Gaia ;
Carrara, Silvia ;
Di Leo, Milena ;
Craviotto, Vincenzo ;
Lamonaca, Laura ;
Lorenzetti, Roberto ;
Andrealli, Alida ;
Antonelli, Giulio ;
Wallace, Michael ;
Sharma, Prateek ;
Rosch, Thomas ;
Hassan, Cesare .
GASTROENTEROLOGY, 2020, 159 (02) :512-+
[99]  
Retson T.A., 2022, HIGH PERFORMANCE FDA
[100]   Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System [J].
Rodriguez-Ruiz, Alejandro ;
Krupinski, Elizabeth ;
Mordang, Jan-Jurre ;
Schilling, Kathy ;
Heywang-Koebrunner, Sylvia H. ;
Sechopoulos, Joannis ;
Mann, Ritse M. .
RADIOLOGY, 2019, 290 (02) :305-314