From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment

被引:285
作者
Swanson, Kyle [1 ]
Wu, Eric [2 ]
Zhang, Angela [3 ]
Alizadeh, Ash A. [4 ]
Zou, James [1 ,2 ,5 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Genet, Stanford, CA USA
[4] Stanford Univ, Dept Med, Stanford, CA USA
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE; GENE-EXPRESSION; LUNG-CANCER; SKIN-CANCER; DEEP; SYSTEM; CLASSIFICATION; VALIDATION; BIOPSIES; DENSITY;
D O I
10.1016/j.cell.2023.01.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient out-comes, and inform treatment planning. Here, we review recent applications of ML across the clinical oncology workflow. We review how these techniques are applied to medical imaging and to molecular data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design. We discuss key considerations in developing ML for the distinct challenges posed by imaging and molecular data. Finally, we examine ML models approved for cancer-related patient usage by regulatory agencies and discuss approaches to improve the clinical usefulness of ML.
引用
收藏
页码:1772 / 1791
页数:20
相关论文
共 139 条
[1]   Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms [J].
Akselrod-Ballin, Ayelet ;
Chorev, Michal ;
Shoshan, Yoel ;
Spiro, Adam ;
Hazan, Alon ;
Melamed, Roie ;
Barkan, Ella ;
Herzel, Esma ;
Naor, Shaked ;
Karavani, Ehud ;
Koren, Gideon ;
Goldscbmidt, Yaara ;
Shalev, Varda ;
Rosen-Zvi, Michal ;
Guindy, Michal .
RADIOLOGY, 2019, 292 (02) :331-342
[2]  
[Anonymous], MAMM NORM
[3]  
Archambault Y, 2020, Med Phys Int J, V8, P77
[4]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[5]   Deep learning modeling using normal mammograms for predicting breast cancer risk [J].
Arefan, Dooman ;
Mohamed, Aly A. ;
Berg, Wendie A. ;
Zuley, Margarita L. ;
Sumkin, Jules H. ;
Wu, Shandong .
MEDICAL PHYSICS, 2020, 47 (01) :110-118
[6]   An artificial intelligence-assisted diagnostic platform for rapid near-patient hematology [J].
Bachar, Neta ;
Benbassat, Dana ;
Brailovsky, David ;
Eshel, Yochay ;
Gluck, Dan ;
Levner, Daniel ;
Levy, Sarah ;
Pecker, Sharon ;
Yurkovsky, Evgeny ;
Zait, Amir ;
Sever, Cordelia ;
Kratz, Alexander ;
Brugnara, Carlo .
AMERICAN JOURNAL OF HEMATOLOGY, 2021, 96 (10) :1264-1274
[7]   External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules [J].
Baldwin, David R. ;
Gustafson, Jennifer ;
Pickup, Lyndsey ;
Arteta, Carlos ;
Novotny, Petr ;
Declerck, Jerome ;
Kadir, Timor ;
Figueiras, Catarina ;
Sterba, Albert ;
Exell, Alan ;
Potesil, Vaclav ;
Holland, Paul ;
Spence, Hazel ;
Clubley, Alison ;
O'Dowd, Emma ;
Clark, Matthew ;
Ashford-Turner, Victoria ;
Callister, Matthew E. J. ;
Gleeson, Fergus, V .
THORAX, 2020, 75 (04) :306-312
[8]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[9]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[10]   De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection [J].
Beshnova, Daria ;
Ye, Jianfeng ;
Onabolu, Oreoluwa ;
Moon, Benjamin ;
Zheng, Wenxin ;
Fu, Yang-Xin ;
Brugarolas, James ;
Lea, Jayanthi ;
Li, Bo .
SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (557)