A natural indirect-to-direct band gap transition in artificially fabricated MoS2 and MoSe2 flowers

被引:9
作者
Zhou, Jun [1 ]
Cui, Juan [2 ]
Du, Shuo [3 ]
Zhao, Zihan [4 ]
Guo, Jianfeng [5 ,6 ]
Li, Songyang [5 ,6 ]
Zhang, Weifeng [4 ]
Liu, Nan [4 ]
Li, Xiaotian [1 ]
Bai, Qinghu [3 ]
Guo, Yang [3 ]
Mi, Shuo [5 ,6 ]
Cheng, Zhihai [5 ,6 ]
He, Lin [1 ]
Nie, J. C. [1 ]
Yang, Yu [2 ]
Dou, Ruifen [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[5] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[6] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano De, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
BILAYER MOS2; MOLYBDENUM-DISULFIDE; ELECTRONIC-STRUCTURE; LAYERED MATERIALS; DIRAC FERMIONS; MONOLAYER; GRAPHENE; STRAIN; SHEAR; MODES;
D O I
10.1039/d3nr00477e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Twisted bilayer (tB) transition metal dichalcogenide (TMD) structures formed from two pieces of a periodic pattern overlaid with a relative twist manifest novel electronic and optical properties and correlated electronic phenomena. Here, twisted flower-like MoS2 and MoSe2 bilayers were artificially fabricated by the chemical vapor deposition (CVD) method. Photoluminescence (PL) studies demonstrated that an energy band structural transition from the indirect gap to the direct gap happened in the region away from the flower center in tB MoS2 (MoSe2) flower patterns, accompanied by an enhanced PL intensity. The indirect-to-direct-gap transition in the tB-MoS2 (MoSe2) flower dominantly originated from a gradually enlarged interlayer spacing and thus, interlayer decoupling during the spiral growth of tB flower patterns. Meanwhile, the expanded interlayer spacing resulted in a decreased effective mass of the electrons. This means that the charged exciton (trion) population was reduced and the neutral exciton density was increased to obtain the upgraded PL intensity in the off-center region. Our experimental results were further evidenced by the density functional theory (DFT) calculations of the energy band structures and the effective masses of electrons and holes for the artificial tB-MoS2 flower with different interlayer spacings. The single-layer behavior of tB flower-like homobilayers provided a viable route to finely manipulate the energy band gap and the corresponding exotic optical properties by locally tuning the stacked structures and to satisfy the real requirement in TMD-based optoelectronic devices.
引用
收藏
页码:7792 / 7802
页数:11
相关论文
共 56 条
[1]  
[Anonymous], GEN METHOD GROWTH ME
[2]   Moire bands in twisted double-layer graphene [J].
Bistritzer, Rafi ;
MacDonald, Allan H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12233-12237
[3]   Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Demir, Ahmet ;
Fang, Shiang ;
Tomarken, Spencer L. ;
Luo, Jason Y. ;
Sanchez-Yamagishi, Javier D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Ashoori, Ray C. ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :80-+
[4]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[5]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[6]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[7]   Strain engineering in two-dimensional nanomaterials beyond graphene [J].
Deng, Shikai ;
Sumant, Anirudha V. ;
Berry, Vikas .
NANO TODAY, 2018, 22 :14-35
[8]   Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2 [J].
Desai, Sujay B. ;
Seol, Gyungseon ;
Kang, Jeong Seuk ;
Fang, Hui ;
Battaglia, Corsin ;
Kapadia, Rehan ;
Ager, Joel W. ;
Guo, Jing ;
Javey, Ali .
NANO LETTERS, 2014, 14 (08) :4592-4597
[9]   Direct Bandgap Transition in Many-Layer MoS2 by Plasma-Induced Layer Decoupling [J].
Dhall, Rohan ;
Neupane, Mahesh R. ;
Wickramaratne, Darshana ;
Mecklenburg, Matthew ;
Li, Zhen ;
Moore, Cameron ;
Lake, Roger K. ;
Cronin, Stephen .
ADVANCED MATERIALS, 2015, 27 (09) :1573-+
[10]   Electronically Weak Coupled Bilayer MoS2 at Various Twist Angles via Folding [J].
Du, Xiaojia ;
Lee, Yangjin ;
Zhang, Yan ;
Yu, Tianhao ;
Kim, Kwanpyo ;
Liu, Nan .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) :22819-22827