Multi-view manifold learning of human brain-state trajectories

被引:17
作者
Busch, Erica L. [1 ]
Huang, Jessie [2 ]
Benz, Andrew [3 ]
Wallenstein, Tom [2 ]
Lajoie, Guillaume [4 ,5 ]
Wolf, Guy [4 ,5 ]
Krishnaswamy, Smita [2 ,6 ,7 ,8 ]
Turk-Browne, Nicholas B. [1 ,8 ]
机构
[1] Yale Univ, Dept Psychol, New Haven, CT USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[3] Yale Univ, Dept Math, New Haven, CT USA
[4] Univ Montreal, Dept Math & Stat, Montreal, PQ, Canada
[5] Mila Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
[6] Yale Univ, Dept Genet, New Haven, CT 06511 USA
[7] Yale Univ, Program Appl Math, New Haven, CT 06520 USA
[8] Yale Univ, Wu Tsai Inst, New Haven, CT 06510 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
DIMENSIONALITY REDUCTION; MEMORY; PERCEPTION; DYNAMICS; REPRESENTATIONS; BOUNDARIES; PATTERNS;
D O I
10.1038/s43588-023-00419-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes. A manifold learning method called T-PHATE is developed for high-dimensional time-series data. T-PHATE is applied to brain data (functional magnetic resonance imaging) where it faithfully denoises signals and unveils latent brain-state trajectories which correspond with cognitive processing.
引用
收藏
页码:240 / 253
页数:18
相关论文
共 68 条
[1]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[2]   Neural correlations, population coding and computation [J].
Averbeck, BB ;
Latham, PE ;
Pouget, A .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) :358-366
[3]   Representation of Real-World Event Schemas during Narrative Perception [J].
Baldassano, Christopher ;
Hasson, Uri ;
Norman, Kenneth A. .
JOURNAL OF NEUROSCIENCE, 2018, 38 (45) :9689-9699
[4]   Discovering Event Structure in Continuous Narrative Perception and Memory [J].
Baldassano, Christopher ;
Chen, Janice ;
Zadbood, Asieh ;
Pillow, Jonathan W. ;
Hasson, Uri ;
Norman, Kenneth A. .
NEURON, 2017, 95 (03) :709-+
[5]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[6]   The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration [J].
Birn, Rasmus M. ;
Smith, Monica A. ;
Jones, Tyler B. ;
Bandettini, Peter A. .
NEUROIMAGE, 2008, 40 (02) :644-654
[7]  
Brockwell PJ, 2016, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-3-319-29854-2
[8]  
Busch E., 2023, KRISHNASWAMYLAB TPHA, DOI [10.5281/zenodo.7637523, DOI 10.5281/ZENODO.7637523]
[9]   Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques [J].
Casanova, Ramon ;
Lyday, Robert G. ;
Bahrami, Mohsen ;
Burdette, Jonathan H. ;
Simpson, Sean L. ;
Laurienti, Paul J. .
FRONTIERS IN NEUROINFORMATICS, 2021, 15
[10]   The Code for Facial Identity in the Primate Brain [J].
Chang, Le ;
Tsao, Doris Y. .
CELL, 2017, 169 (06) :1013-+