On the Construction of Traveling Water Waves with Constant Vorticity and Infinite Boundary

被引:0
作者
Shrestha, Pawan [1 ]
Jang, K. C. Durga [1 ]
Sharma, Ramjee [2 ]
机构
[1] TU, Cent Dept Math, Kathmandu, Nepal
[2] Univ North Georgia, Oakwood, GA USA
关键词
D O I
10.1155/2023/6317674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The issue of whether there is a closed orbit in the water waves in an infinite boundary condition is an outstanding open problem. In this work, we first discuss the various developments on the structure of water waves in the context of finite bottom conditions. We then focus on the behavior of water for the kinematic boundary for the infinite depth. We present some findings to address this issue by creating a water wave profile for the zero and constant vorticity conditions through the application of the Crandall-Rabinowitz theorem.
引用
收藏
页数:6
相关论文
共 28 条
  • [11] Nearly-Hamiltonian structure for water waves with constant vorticity
    Constantin, Adrian
    Ivanov, Rossen I.
    Prodanov, Emil M.
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2008, 10 (02) : 224 - 237
  • [12] The trajectories of particles in Stokes waves
    Constantin, Adrian
    [J]. INVENTIONES MATHEMATICAE, 2006, 166 (03) : 523 - 535
  • [13] Exact Travelling Periodic Water Waves in Two-Dimensional Irrotational Flows
    Constantin, Adrian
    [J]. NONLINEAR WATER WAVES, 2016, 2158 : 1 - 82
  • [14] Analyticity of periodic traveling free surface water waves with vorticity
    Constantin, Adrian
    Escher, Joachim
    [J]. ANNALS OF MATHEMATICS, 2011, 173 (01) : 559 - 568
  • [15] CRAIG W, 1991, IMA V MATH, V30, P37
  • [16] HAMILTONIAN LONG-WAVE APPROXIMATIONS TO THE WATER-WAVE PROBLEM
    CRAIG, W
    GROVES, MD
    [J]. WAVE MOTION, 1994, 19 (04) : 367 - 389
  • [17] Crandall MG, 1971, J FUNCT ANAL, V8, P321, DOI [10.1016/0022-1236(71)90015-2, DOI 10.1016/0022-1236(71)90015-2]
  • [18] Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring-Powell Fluid Modell
    Diaz, Jose Luis
    Rahman, Saeed Ur
    Sanchez Rodriguez, Juan Carlos
    Simon Rodriguez, Maria Antonia
    Filippone Capllonch, Guillermo
    Herrero Hernandez, Antonio
    [J]. MATHEMATICS, 2022, 10 (04)
  • [19] Geometric Perturbation Theory and Travelling Waves profiles analysis in a Darcy-Forchheimer fluid model
    Diaz Palencia, J. L.
    Rahman, S.
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (03) : 556 - 572
  • [20] Analysis of travelling wave solutions for Eyring-Powell fluid formulated with a degenerate diffusivity and a Darcy-Forchheimer law
    Diaz Palencia, Jose Luis
    Rahman, Saeed Ur
    Naranjo Redondo, Antonio
    [J]. AIMS MATHEMATICS, 2022, 7 (08): : 15212 - 15233