Local Electric Field Induced by Atomic-Level Donor-Acceptor Couple of O Vacancies and Mn Atoms Enables Efficient Hybrid Capacitive Deionization

被引:45
作者
Fu, Zhenzhen [1 ]
Wang, Dewei [1 ]
Yao, Yebo [1 ]
Gao, Xueying [1 ]
Liu, Xia [1 ]
Wang, Shiyu [1 ]
Yao, Shuyun [1 ]
Wang, Xiaoxuan [1 ]
Chi, Xinyue [1 ]
Zhang, Kaixin [1 ]
Xiong, Yuanyuan [1 ]
Wang, Jinrui [1 ]
Hou, Zishan [1 ]
Yang, Zhiyu [1 ]
Yan, Yi-Ming [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
hybrid capacitive deionization; ions storage mechanism; local electric field; Na+ diffusion; transition metal oxides; METAL-ORGANIC-FRAMEWORKS; WATER DESALINATION; MANGANESE OXIDE; CARBON; PERFORMANCE; NANOSHEETS; MEMBRANES; GRAPHENE;
D O I
10.1002/smll.202205666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal oxides suffer from slow salt removal rate (SRR) due to inferior ions diffusion ability in hybrid capacitive deionization (HCDI). Local electric field (LEF) can efficiently improve the ions diffusion kinetics in thin electrodes for electrochemical energy storage. Nevertheless, it is still a challenge to facilitate the ions diffusion in bulk electrodes with high loading mass for HCDI. Herein, this work delicately constructs a LEF via engineering atomic-level donor (O vacancies)-acceptor (Mn atoms) couples, which significantly facilitates the ions diffusion and then enables a high-performance HCDI. The LEF boosts an extended accelerated ions diffusion channel at the particle surface and interparticle space, resulting in both remarkably enhanced SRR and salt removal capacity. Convincingly, the theoretical calculations demonstrate that electron-enriched Mn atoms center coupled with an electron-depleted O vacancies center is formed due to the electron back-donation from O vacancies to adjacent Mn centers. The resulted LEF efficiently reduce the ions diffusion energy barrier. This work sheds light on the effect of atomic-level LEF on improving ions diffusion kinetics at high loading mass application and paves the way for the design of transition metal oxides toward high-performance HCDI applications.
引用
收藏
页数:10
相关论文
共 88 条
[1]  
Anh N. T. K., 2022, ELECTROCHIM ACTA, V401
[2]   Porous Cryo-Dried MXene for Efficient Capacitive Deionization [J].
Bao, Weizhai ;
Tang, Xiao ;
Guo, Xin ;
Choi, Sinho ;
Wang, Chengyin ;
Gogotsi, Yury ;
Wang, Guoxiu .
JOULE, 2018, 2 (04) :778-787
[3]   Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization [J].
Byles, Bryan W. ;
Cullen, David A. ;
More, Karren L. ;
Pomerantseva, Ekaterina .
NANO ENERGY, 2018, 44 :476-488
[4]   X-ray Photoelectron Spectroscopy and in Situ X-ray Absorption Spectroscopy Studies on Reversible Insertion/Desertion of Dicyanamide Anions into/from Manganese Oxide in Ionic Liquid [J].
Chang, Jeng-Kuei ;
Lee, Ming-Tsung ;
Tsai, Wen-Ta ;
Deng, Ming-Jay ;
Sun, I-Wen .
CHEMISTRY OF MATERIALS, 2009, 21 (13) :2688-2695
[5]   Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization [J].
Chen, Yingzhi ;
Yue, Mengbin ;
Huang, Zheng-Hong ;
Kang, Feiyu .
CHEMICAL ENGINEERING JOURNAL, 2014, 252 :30-37
[6]   Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure [J].
Chen, Zeqiu ;
Xu, Xingtao ;
Liu, Yong ;
Li, Junfeng ;
Wang, Kai ;
Ding, Zibiao ;
Meng, Fanyue ;
Lu, Ting ;
Pan, Likun .
DESALINATION, 2022, 528
[7]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[8]   Battery Electrode Materials with Omnivalent Cation Storage for Fast and Charge-Efficient Ion Removal of Asymmetric Capacitive Deionization [J].
Choi, Seungyeon ;
Chang, Barsa ;
Kim, Seoni ;
Lee, Jiho ;
Yoon, Jeyong ;
Choi, Jang Wook .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (35)
[9]   Mesoporous MoS2 as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Na-Ion Charge Storage [J].
Cook, John B. ;
Kim, Hyung-Seok ;
Yan, Yan ;
Ko, Jesse S. ;
Robbennolt, Shauna ;
Dunn, Bruce ;
Tolbert, Sarah H. .
ADVANCED ENERGY MATERIALS, 2016, 6 (09)
[10]   Synthetic Membranes for Water Purification: Status and Future [J].
Fane, Anthony G. ;
Wang, Rong ;
Hu, Matthew X. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (11) :3368-3386