Hierarchical disjoint principal component analysis

被引:2
|
作者
Cavicchia, Carlo [1 ]
Vichi, Maurizio [2 ]
Zaccaria, Giorgia [2 ]
机构
[1] Erasmus Univ, Econometr Inst, Rotterdam, Netherlands
[2] Univ Roma La Sapienza, Dept Stat Sci, Rome, Italy
关键词
Dimension reduction; Hierarchical models; Parsimonious trees; Reflective models; Formative models; HIGHER-ORDER FACTORS; STATISTICAL VARIABLES; GENERAL INTELLIGENCE; CAUSAL INDICATORS; PERSONALITY; MODEL; COMPOSITE; COMPLEX; PCA;
D O I
10.1007/s10182-022-00458-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dimension reduction, by means of Principal Component Analysis (PCA), is often employed to obtain a reduced set of components preserving the largest possible part of the total variance of the observed variables. Several methodologies have been proposed either to improve the interpretation of PCA results (e.g., by means of orthogonal, oblique rotations, shrinkage methods), or to model oblique components or factors with a hierarchical structure, such as in Bi-factor and High-Order Factor analyses. In this paper, we propose a new methodology, called Hierarchical Disjoint Principal Component Analysis (HierDPCA), that aims at building a hierarchy of disjoint principal components of maximum variance associated with disjoint groups of observed variables, from Q up to a unique, general one. HierDPCA also allows choosing the type of the relationship among disjoint principal components of two sequential levels, from the lowest upwards, by testing the component correlation per level and changing from a reflective to a formative approach when this correlation turns out to be not statistically significant. The methodology is formulated in a semi-parametric least-squares framework and a coordinate descent algorithm is proposed to estimate the model parameters. A simulation study and two real applications are illustrated to highlight the empirical properties of the proposed methodology.
引用
收藏
页码:537 / 574
页数:38
相关论文
共 50 条
  • [41] Principal component analysis for multivariate extremes
    Drees, Holger
    Sabourin, Anne
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 908 - 943
  • [42] Principal Component Analysis of Thermographic Data
    Winfree, William P.
    Cramer, K. Elliott
    Zalameda, Joseph N.
    Howell, Patricia A.
    Burke, Eric R.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII, 2015, 9485
  • [43] Functional quantile principal component analysis
    Mendez-Civieta, Alvaro
    Wei, Ying
    Diaz, Keith M.
    Goldsmith, Jeff
    BIOSTATISTICS, 2024, 26 (01)
  • [44] Phantom oscillations in principal component analysis
    Shinn, Maxwell
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (48)
  • [45] Scaled Torus Principal Component Analysis
    Zoubouloglou, Pavlos
    Garcia-Portugues, Eduardo
    Marron, J. S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1024 - 1035
  • [46] Bayesian compressive principal component analysis
    Ma, Di
    Chen, Songcan
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (04)
  • [47] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [48] Principal Component Analysis for Fingerprint Positioning
    Zhang, Yang
    Ren, Qianqian
    Li, Jinbao
    Pan, Yu
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT I, 2020, 12452 : 305 - 313
  • [49] Principal component analysis and clustering on manifolds
    V. Mardia, Kanti
    Wiechers, Henrik
    Eltzner, Benjamin
    Huckemann, Stephan F.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [50] Principal component analysis in an asymmetric norm
    Tran, Ngoc M.
    Burdejova, Petra
    Ospienko, Maria
    Haerdle, Wolfgang K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 1 - 21