Efficient MATLAB implementation of NURBS-based IGA and material design using isogeometric topology optimization

被引:7
作者
Gai, Yundong [1 ,3 ]
Xing, Jian [2 ]
Hu, Ping [3 ]
机构
[1] Hithink RoyalFlush Informat Network Co Ltd, Hangzhou 310000, Peoples R China
[2] Hangzhou Innovat Inst Beihang Univ, Key Lab Intelligent Sensing Mat & Chip Integrat T, Hangzhou 310000, Peoples R China
[3] Dalian Univ Technol, Sch Automot Engn, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Isogeometric analysis; Homogenization; Topology optimization; Material design; MATLAB; LEVEL SET METHOD; CODE WRITTEN; LOCAL REFINEMENT; HOMOGENIZATION; SPLINES; FILTERS; CAD;
D O I
10.1007/s11081-022-09752-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present compact and efficient MATLAB codes for NURBS-based IGA and material design using isogeometric topology optimization. We make full use of the advantages of MATLAB in the vector and matrix computation and calculate the span indexes of and NURBS basis functions at multi-parameters simultaneously, so that the efficiency in generating IGA element and global stiffness matrices can be increased significantly. Based on the presented IGA MATLAB codes, we apply the IGA-based SIMP topology optimization into material design with extreme properties, such as shear modulus maximization and negative Poisson's ratio, where the effective macroscopic elasticity tensor is calculated by the energy-based homogenization approach. Numerical examples demonstrate the efficiency of the presented codes in generating stiffness matrices and the effectiveness in material optimization design. All the codes are included as appendixes.
引用
收藏
页码:1773 / 1808
页数:36
相关论文
共 57 条
  • [1] How to determine composite material properties using numerical homogenization
    Andreassen, Erik
    Andreasen, Casper Schousboe
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 83 : 488 - 495
  • [2] Efficient topology optimization in MATLAB using 88 lines of code
    Andreassen, Erik
    Clausen, Anders
    Schevenels, Mattias
    Lazarov, Boyan S.
    Sigmund, Ole
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (01) : 1 - 16
  • [3] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [4] Bendse MP., 1989, Struct Optim, V1, P193, DOI DOI 10.1007/BF01650949
  • [5] GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD
    BENDSOE, MP
    KIKUCHI, N
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) : 197 - 224
  • [6] Filters in topology optimization
    Bourdin, B
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (09) : 2143 - 2158
  • [7] A family of MMA approximations for structural optimization
    Bruyneel, M
    Duysinx, P
    Fleury, C
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2002, 24 (04) : 263 - 276
  • [8] A discrete level-set topology optimization code written in Matlab
    Challis, Vivien J.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (03) : 453 - 464
  • [9] Cottrell J.A., 2009, Isogeometric analysis: toward integration of CAD and FEA, DOI [10.1002/9780470749081, DOI 10.1002/9780470749081]
  • [10] IsoGeometric analysis using T-splines on two-patch geometries
    da Veiga, L. Beira
    Buffa, A.
    Cho, D.
    Sangalli, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1787 - 1803