Understanding the Dynamics of the Saccharomyces cerevisiae and Scheffersomyces stipitis Abundance in Co-culturing Process for Bioethanol Production from Corn Stover

被引:13
作者
Wu, Yilu [1 ]
Wen, Jieyi [1 ]
Wang, Kang [1 ]
Su, Changsheng [1 ]
Chen, Changjing [1 ]
Cui, Ziheng [1 ]
Cai, Di [1 ]
Cheng, Shikun [3 ]
Cao, Hui [2 ]
Qin, Peiyong [2 ]
机构
[1] Beijing Univ Chem Technol, Natl Energy R&D Ctr Biorefinery, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing 100029, Peoples R China
[3] Univ Sci & Technol, Beijing Key Lab Resource Oriented Treatment Ind P, Beijing 100083, Peoples R China
关键词
Bioethanol; Co-fermentation; Saccharomyces cerevisiae; Scheffersomyces stipitis; Abundance dynamic; TITER ETHANOL-PRODUCTION; SIMULTANEOUS SACCHARIFICATION; RICE STRAW; ENZYMATIC-HYDROLYSIS; ESCHERICHIA-COLI; CANDIDA-SHEHATAE; FERMENTATION; XYLOSE; GLUCOSE; TOLERANCE;
D O I
10.1007/s12649-022-01861-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The co-utilization pentose and hexose in lignocellulosic biomass hydrolysate is the core for economically fermentative production of the second-generation bioethanol as sustainable biofuel candidate. In this study, S. cerevisiae was co-cultured with S. stipitis for highly effective bioethanol production from pentose and hexose enriched lignocellulose hydrolysate. Results indicated that the co-culturing process could be divided into two phases (a twin-consortium phase and a second phase with xylose conversion by S. stipitis). Under the optimized condition (S. cerevisiae/S. stipitis inoculum ratio of 20/80 (v/v), overall inoculation size of 10% (v/v), and ventilation volume of 0.01 vvm), the highest ethanol yield of 0.39 g/g (of monomer sugars) can be achieved. Dynamics of the S. stipitis and S. cerevisiae abundance were further investigated, which revealed that the flora of S. cerevisiae contains a large part in the twin-consortium phase, while the S. stipitis flora gradually increased with the lengthen of fermentation period, and finally became the predominated strain after used up the glucose consumption in corn stover hydrolysate. [GRAPHICS] .
引用
收藏
页码:43 / 55
页数:13
相关论文
共 52 条
[1]   Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway [J].
Borgstrom, Celina ;
Wasserstrom, Lisa ;
Almqvist, Henrik ;
Broberg, Kristina ;
Klein, Bianca ;
Noack, Stephan ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
METABOLIC ENGINEERING, 2019, 55 (1-11) :1-11
[2]   Overcoming lignocellulose-derived microbial inhibitors: advancing the Saccharomyces cerevisiae resistance toolbox [J].
Brandt, Bianca A. ;
Jansen, Trudy ;
Gorgens, Johann F. ;
van Zyl, Willem H. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (06) :1520-1536
[3]   L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw [J].
Chen, Hao ;
Huo, Weizhong ;
Wang, Boxuan ;
Wang, Yong ;
Wen, Hao ;
Cai, Di ;
Zhang, Changwei ;
Wu, Yilu ;
Qin, Peiyong .
INDUSTRIAL CROPS AND PRODUCTS, 2019, 141
[4]   Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review [J].
Chen, Yanli .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (05) :581-597
[5]   Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions [J].
Costa, Carlos E. ;
Romani, Aloia ;
Cunha, Joana T. ;
Johansson, Bjorn ;
Domingues, Lucilia .
BIORESOURCE TECHNOLOGY, 2017, 227 :24-34
[6]   Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions [J].
Cunha, Joana T. ;
Romani, Aloia ;
Costa, Carlos E. ;
Sa-Correia, Isabel ;
Domingues, Lucilia .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (01) :159-175
[7]   Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative [J].
Dai, Zongjie ;
Huang, Mingtao ;
Chen, Yun ;
Siewers, Verena ;
Nielsen, Jens .
NATURE COMMUNICATIONS, 2018, 9
[8]   Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae [J].
De Bari, Isabella ;
De Canio, Paola ;
Cuna, Daniela ;
Liuzzi, Federico ;
Capece, Angela ;
Romano, Patrizia .
NEW BIOTECHNOLOGY, 2013, 30 (06) :591-597
[9]   Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocelluloses by controlled mixed culture systems [J].
Delgenes, JP ;
Escare, MC ;
Laplace, JM ;
Moletta, R ;
Navarro, JM .
INDUSTRIAL CROPS AND PRODUCTS, 1998, 7 (2-3) :101-111
[10]   Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering [J].
Demeke, Mekonnen M. ;
Dietz, Heiko ;
Li, Yingying ;
Foulquie-Moreno, Maria R. ;
Mutturi, Sarma ;
Deprez, Sylvie ;
Den Abt, Tom ;
Bonini, Beatriz M. ;
Liden, Gunnar ;
Dumortier, Francoise ;
Verplaetse, Alex ;
Boles, Eckhard ;
Thevelein, Johan M. .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6