Deep Learning in the Detection of Rare Fractures - Development of a "Deep Learning Convolutional Network" Model for Detecting Acetabular Fractures (vol 161, e1, 2023)

被引:0
作者
Erne, Felix
Dehncke, Daniel
Herath, Steven C.
Springer, Fabian
Pfeifer, Nico
Eggeling, Ralf
Kuper, Markus Alexander
机构
来源
ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE | 2023年 / 161卷 / 01期
关键词
D O I
暂无
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
引用
收藏
页码:E1 / E1
页数:1
相关论文
共 50 条
[41]   Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea [J].
Bai, Gen ;
Wang, Zhifeng ;
Zhu, Xianye ;
Feng, Yanqing .
APPLIED OCEAN RESEARCH, 2022, 118
[42]   A hybrid long short-term memory-convolutional neural network multi-stream deep learning model with Convolutional Block Attention Module incorporated for monkeypox detection [J].
Yeboah, Benjamin Appiah ;
Micah, Kojo Sam ;
Acquah, Isaac ;
Mensah, Kofi Ampomah .
SCIENCE PROGRESS, 2025, 108 (01)
[43]   RETRACTION: Improved Deep Learning Network Based in Combination with Cost-sensitive Learning for Early Detection of Ovarian Cancer in Color Ultrasound Detecting System (Retraction of Vol 43, art no 251, 2019) [J].
Zhang, Lei ;
Huang, Jian ;
Liu, Li .
JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
[44]   Non-proliferative diabetic retinopathy detection using Rosmarus Quagga optimized explainable generative meta learning based deep convolutional neural network model [J].
Mahapadi, Ajita Arvind ;
Shirsath, Vishal ;
Pundge, Ajitkumar .
INTERNATIONAL OPHTHALMOLOGY, 2025, 45 (01)
[45]   Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset(vol 18,: e0285188,2023) [J].
Braghetto, Anna ;
Marturano, Francesca ;
Paiusco, Marta ;
Baiesi, Marco ;
Bettinelli, Andrea .
SCIENTIFIC REPORTS, 2023, 13 (01)
[46]   Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg (vol 14, 1221892, 2023) [J].
Suh, Pae Sun ;
Jung, Wooseok ;
Suh, Chong Hyun ;
Kim, Jinyoung ;
Oh, Jio ;
Heo, Hwon ;
Shim, Woo Hyun ;
Lim, Jae-Sung ;
Lee, Jae-Hong ;
Kim, Ho Sung ;
Kim, Sang Joon .
FRONTIERS IN NEUROLOGY, 2023, 14
[47]   Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs (vol 2, e191095, 2019) [J].
Hwang, E. J. ;
Park, S. ;
Jin, K-N .
JAMA NETWORK OPEN, 2019, 2 (04)
[48]   Automated CT Staging of Chronic Obstructive Pulmonary Disease Severity for Predicting Disease Progression and Mortality with a Deep Learning Convolutional Neural Network (vol 3, e200477, 2021) [J].
Hasenstab, Kyle A. ;
Yuan, Nancy ;
Retson, Tara ;
Conrad, Douglas J. ;
Kligerman, Seth ;
Lynch, David A. ;
Hsiao, Albert .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2022, 4 (01)
[49]   BEST IN PHYSICS (IMAGING): Validation of a Deep-Learning Model Observer in a Realistic Lung-Nodule Detection Task with Convolutional Neural Network-Based CT Denoising [J].
Gong, H. ;
Huber, N. ;
Koo, C. ;
Johnson, T. ;
Inuoe, A. ;
Marsh, J. ;
Thorne, J. ;
Leng, S. ;
Fletcher, J. ;
McCollough, C. ;
Yu, L. .
MEDICAL PHYSICS, 2021, 48 (06)
[50]   A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals [J].
Le He ;
Li Zhang ;
Xiangtian Lin ;
Yunfeng Qin .
Medical & Biological Engineering & Computing, 2024, 62 :1781-1793