Efficient estimation for left-truncated competing risks regression for case-cohort studies

被引:0
作者
Fang, Xi [1 ]
Ahn, Kwang Woo [1 ]
Cai, Jianwen [2 ]
Kim, Soyoung [1 ]
机构
[1] Med Coll Wisconsin, Div Biostat, Milwaukee, WI 53226 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
case-cohort study design; competing risks; efficiency; left-truncation; stratified subdistribution hazards model; SEMIPARAMETRIC TRANSFORMATION MODELS; HAZARDS REGRESSION; SUBDISTRIBUTION; LIKELIHOOD; FAILURE; DESIGN;
D O I
10.1093/biomtc/ujad008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.
引用
收藏
页数:12
相关论文
共 29 条
  • [1] ROBUST VARIANCE-ESTIMATION FOR THE CASE-COHORT DESIGN
    BARLOW, WE
    [J]. BIOMETRICS, 1994, 50 (04) : 1064 - 1072
  • [2] Using the Whole Cohort in the Analysis of Case-Cohort Data
    Breslow, Norman E.
    Lumley, Thomas
    Ballantyne, Christie M.
    Chambless, Lloyd E.
    Kulich, Michal
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 (11) : 1398 - 1405
  • [3] Power calculation for case-cohort studies with nonrare events
    Cai, Jianwen
    Zeng, Donglin
    [J]. BIOMETRICS, 2007, 63 (04) : 1288 - 1295
  • [4] A proportional hazards model for the subdistribution of a competing risk
    Fine, JP
    Gray, RJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) : 496 - 509
  • [5] Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring
    Geskus, Ronald B.
    [J]. BIOMETRICS, 2011, 67 (01) : 39 - 49
  • [6] flexsurv: A Platform for Parametric Survival Modeling in R
    Jackson, Christopher H.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (08): : 1 - 33
  • [7] More efficient estimators for case-cohort studies
    Kim, S.
    Cai, J.
    Lu, W.
    [J]. BIOMETRIKA, 2013, 100 (03) : 695 - 708
  • [8] Stratified proportional subdistribution hazards model with covariate-adjusted censoring weight for case-cohort studies
    Kim, Soyoung
    Xu, Yayun
    Zhang, Mei-Jie
    Ahn, Kwang-Woo
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1222 - 1242
  • [9] Analysis of multiple survival events in generalized case-cohort designs
    Kim, Soyoung
    Zeng, Donglin
    Cai, Jianwen
    [J]. BIOMETRICS, 2018, 74 (04) : 1250 - 1260
  • [10] Improving the efficiency of estimation in the additive hazards model for stratified case-cohort design with multiple diseases
    Kim, Soyoung
    Cai, Jianwen
    Couper, David
    [J]. STATISTICS IN MEDICINE, 2016, 35 (02) : 282 - 293