共 43 条
Melanogrit potentiates melanogenesis by escalating cellular tyrosinase activity and MITF levels via pERK inhibition
被引:2
作者:
Balkrishna, Acharya
[1
,2
,3
,4
]
Lochab, Savita
[1
]
Verma, Sudeep
[1
]
Srivastava, Jyotish
[1
]
Dev, Rishabh
[1
]
Varshney, Anurag
[1
,2
,5
]
机构:
[1] Patanjali Res Inst, Drug Discovery & Dev Div, NH-58, Haridwar 249405, Uttarakhand, India
[2] Univ Patanjali, Patanjali Yog Peeth, Dept Allied & Appl Sci, Roorkee Haridwar Rd, Haridwar 249405, Uttarakhand, India
[3] Patanjali Yog Peeth UK Trust, 40 Lambhill St,Kinning Pk, Glasgow G41 1AU, Scotland
[4] Vedic Acharya Samaj Fdn Inc, NFP, 21725 CR 33, Groveland, FL 34736 USA
[5] Jawaharlal Nehru Univ, Special Ctr Syst Med, New Delhi, India
关键词:
MELANIN SYNTHESIS;
ALPHA-MSH;
SKIN;
ERK;
ACTIVATION;
VITILIGO;
PIGMENTATION;
MELANOCYTES;
PSORALEA;
CELLS;
D O I:
10.1042/BSR20231324
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Vitiligo is characterized by the development of white patches on the skin either due to the loss of functional melanocytes or perturbations in the melanogenesis pathway. In the present study, we investigated the therapeutic potential of herbo-mineral formulation, Melanogrit in neutralizing the white patches in the skin. The study utilized UPLC/MS-QToF technique to determine the diversified phytochemical profile in Melanogrit. The murine B16F10 cells when treated with Melanogrit underwent morphological changes, including increased angularity, enlarged cell size, and greater dendritic protrusions. To establish an equivalent model to study melanogenesis, we carefully optimized the dosage of alpha-melanocyte stimulating hormone (alpha MSH) in B16F10 cells as an alternative to using melanocyte-keratinocyte cocultures. The study determined a sub-optimal dose of alpha MSH (0.2 nM) in B16F10 cells that does not manifest any measurable effects on melanogenesis. In contrast, Melanogrit when used in conjunction with 0.2 nM alpha MSH, induced a dose-dependent increase in extracellular and intracellular melanin levels. Melanogrit transcriptionally up-regulated the decisive genes of the melanogenesis pathway, MITF, TYR, and TRP1, which was evident from the increased cellular tyrosine activity. Our findings also demonstrated that Melanogrit ameliorated the MITF protein levels by inhibiting pERK; notably without involving GSK3 beta in the process. Taken together, our findings strongly suggest that Melanogrit has the potential to stimulate melanogenesis, making it a promising candidate for clinical applications in the treatment of white skin patches that develop in vitiligo patients.
引用
收藏
页数:21
相关论文