Observation of non-local impedance response in a passive electrical circuit

被引:4
作者
Zhang, Xiao [1 ]
Zhang, Boxue [1 ]
Zhao, Weihong [2 ]
Lee, Ching Hua [3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
来源
SCIPOST PHYSICS | 2024年 / 16卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ENHANCED SENSITIVITY; EXCEPTIONAL POINTS;
D O I
10.21468/SciPostPhys.16.1.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In media with only short-ranged couplings and interactions, it is natural to assume that physical responses must be local. Yet, we discover that this is not necessarily true, even in a system as commonplace as an electric circuit array. This work reports the experimental observation of non-local impedance response in a designed circuit network consisting exclusively of passive elements such as resistors, inductors and capacitors (RLC). Measurements reveal that the removal of boundary connections dramatically affects the twopoint impedance between certain distant nodes, even in the absence of any amplification mechanism for the voltage signal. This non-local impedance response is distinct from the reciprocal non-Hermitian skin effect, affecting only selected pairs of nodes even as the circuit Laplacian exhibits universally broken spectral bulk-boundary correspondence. Surprisingly, not only are component parasitic resistances unable to erode the non-local response, but they in fact give rise to novel loss-induced topological modes at sufficiently large system sizes, constituting a new manifestation of the critical non-Hermitian skin effect. Our findings chart a new route towards attaining non-local responses in photonic or electrical metamaterials without involving non-linear, non-local, active or amplificative elements.
引用
收藏
页数:18
相关论文
共 59 条
[21]   Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems [J].
Kunst, Flore K. ;
Edvardsson, Elisabet ;
Budich, Jan Carl ;
Bergholtz, Emil J. .
PHYSICAL REVIEW LETTERS, 2018, 121 (02)
[22]   Imaging nodal knots in momentum space through topolectrical circuits [J].
Lee, Ching Hua ;
Sutrisno, Amanda ;
Hofmann, Tobias ;
Helbig, Tobias ;
Liu, Yuhan ;
Ang, Yee Sin ;
Ang, Lay Kee ;
Zhang, Xiao ;
Greiter, Martin ;
Thomale, Ronny .
NATURE COMMUNICATIONS, 2020, 11 (01)
[23]   Anatomy of skin modes and topology in non-Hermitian systems [J].
Lee, Ching Hua ;
Thomale, Ronny .
PHYSICAL REVIEW B, 2019, 99 (20)
[24]   Topolectrical Circuits [J].
Lee, Ching Hua ;
Imhof, Stefan ;
Berger, Christian ;
Bayer, Florian ;
Brehm, Johannes ;
Molenkamp, Laurens W. ;
Kiessling, Tobias ;
Thomale, Ronny .
COMMUNICATIONS PHYSICS, 2018, 1
[25]   Anomalous Edge State in a Non-Hermitian Lattice [J].
Lee, Tony E. .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)
[26]   Simulating hyperbolic space on a circuit board [J].
Lenggenhager, Patrick M. ;
Stegmaier, Alexander ;
Upreti, Lavi K. ;
Hofmann, Tobias ;
Helbig, Tobias ;
Vollhardt, Achim ;
Greiter, Martin ;
Lee, Ching Hua ;
Imhof, Stefan ;
Brand, Hauke ;
Kiessling, Tobias ;
Boettcher, Igor ;
Neupert, Titus ;
Thomale, Ronny ;
Bzdusek, Tomas .
NATURE COMMUNICATIONS, 2022, 13 (01)
[27]   Non-Hermitian pseudo-gaps [J].
Li, Linhu ;
Lee, Ching Hua .
SCIENCE BULLETIN, 2022, 67 (07) :685-690
[28]   Quantized classical response from spectral winding topology [J].
Li, Linhu ;
Mu, Sen ;
Lee, Ching Hua ;
Gong, Jiangbin .
NATURE COMMUNICATIONS, 2021, 12 (01)
[29]   Impurity induced scale-free localization [J].
Li, Linhu ;
Lee, Ching Hua ;
Gong, Jiangbin .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[30]   Critical non-Hermitian skin effect [J].
Li, Linhu ;
Lee, Ching Hua ;
Mu, Sen ;
Gong, Jiangbin .
NATURE COMMUNICATIONS, 2020, 11 (01)