Geometric Phase of a Transmon in a Dissipative Quantum Circuit

被引:0
作者
Viotti, Ludmila [1 ]
Lombardo, Fernando C. [2 ,3 ]
Villar, Paula I. [2 ,3 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, Argentina
[3] Univ Buenos Aires, Inst Fis Buenos Aires IFIBA, CONICET, RA-1428 Buenos Aires, Argentina
关键词
geometric phases; circuit QED; Kerr coupling; SUPERPOSITION; STATES;
D O I
10.3390/e26010089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconducting circuits reveal themselves as promising physical devices with multiple uses. Within those uses, the fundamental concept of the geometric phase accumulated by the state of a system shows up recurrently, as, for example, in the construction of geometric gates. Given this framework, we study the geometric phases acquired by a paradigmatic setup: a transmon coupled to a superconductor resonating cavity. We do so both for the case in which the evolution is unitary and when it is subjected to dissipative effects. These models offer a comprehensive quantum description of an anharmonic system interacting with a single mode of the electromagnetic field within a perfect or dissipative cavity, respectively. In the dissipative model, the non-unitary effects arise from dephasing, relaxation, and decay of the transmon coupled to its environment. Our approach enables a comparison of the geometric phases obtained in these models, leading to a thorough understanding of the corrections introduced by the presence of the environment.
引用
收藏
页数:16
相关论文
共 57 条
[41]   GENERAL SETTING FOR BERRYS PHASE [J].
SAMUEL, J ;
BHANDARI, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (23) :2339-2342
[42]   HOLONOMY, THE QUANTUM ADIABATIC THEOREM, AND BERRY PHASE [J].
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (24) :2167-2170
[43]   Geometric phases for nondegenerate and degenerate mixed states [J].
Singh, K ;
Tong, DM ;
Basu, K ;
Chen, JL ;
Du, JF .
PHYSICAL REVIEW A, 2003, 67 (03) :9
[44]   Geometric phases for mixed states in interferometry [J].
Sjöqvist, E ;
Pati, AK ;
Ekert, A ;
Anandan, JS ;
Ericsson, M ;
Oi, DKL ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2000, 85 (14) :2845-2849
[45]   Non-adiabatic holonomic quantum computation [J].
Sjoqvist, Erik ;
Tong, D. M. ;
Andersson, L. Mauritz ;
Hessmo, Bjoern ;
Johansson, Markus ;
Singh, Kuldip .
NEW JOURNAL OF PHYSICS, 2012, 14
[46]   Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit [J].
Song, Chao ;
Zheng, Shi-Biao ;
Zhang, Pengfei ;
Xu, Kai ;
Zhang, Libo ;
Guo, Qiujiang ;
Liu, Wuxin ;
Xu, Da ;
Deng, Hui ;
Huang, Keqiang ;
Zheng, Dongning ;
Zhu, Xiaobo ;
Wang, H. .
NATURE COMMUNICATIONS, 2017, 8
[47]   Quantum information storage using tunable flux qubits [J].
Steffen, Matthias ;
Brito, Frederico ;
DiVincenzo, David ;
Farinelli, Matthew ;
Keefe, George ;
Ketchen, Mark ;
Kumar, Shwetank ;
Milliken, Frank ;
Rothwell, Mary Beth ;
Rozen, Jim ;
Koch, Roger H. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (05)
[48]   Quantum logic gates for coupled superconducting phase qubits [J].
Strauch, FW ;
Johnson, PR ;
Dragt, AJ ;
Lobb, CJ ;
Anderson, JR ;
Wellstood, FC .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)
[49]  
Swiadek F, 2023, Arxiv, DOI arXiv:2307.07765
[50]   Kinematic approach to the mixed state geometric phase in nonunitary evolution -: art. no. 080405 [J].
Tong, DM ;
Sjöqvist, E ;
Kwek, LC ;
Oh, CH .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :080405-1