Novel Data-Driven Deep Learning Assisted CVA for Ironmaking System Prediction and Control

被引:1
作者
Lou, Siwei [1 ]
Yang, Chunjie [1 ]
Zhang, Xujie [1 ]
Wu, Ping [2 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Informat Sci & Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Ironmaking system (IS); deep learning; nonlinear state-space model; model predictive control; MOLTEN IRON QUALITY;
D O I
10.1109/TCSII.2023.3286899
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Effective control of blast furnace ironmaking system (IS) is crucial to maintain the metallurgical industry in smooth operation. Also, the quality of molten iron (MIQ) can be assessed using indices of phosphorus [P], sulfur [S], and silicon [Si] contents, which provide insight into the current state of the molten iron and internal operations of the blast furnace. In this brief, we propose a novel deep learning assisted canonical variate analysis (DLaCVA) method for modeling and predicting MIQ and optimizing IS control. Due to the highly complex physical and chemical reactions within IS, we build a nonlinear state-space model and estimate its state, utilizing DLaCVA. Moreover, we theoretically analyze of how deep learning can aid in state-space modeling, such as deriving the corresponding optimization objective and learning gradient, laying the basis for exploring deep learning in system identification further. Ultimately, we devise a predictive control strategy based on a quadratic performance index to attain optimal MIQ control performance. Experiments utilizing genuine IS data display that DLaCVA outperforms other methods concerning modeling accuracy and control effectiveness.
引用
收藏
页码:4544 / 4548
页数:5
相关论文
共 50 条
  • [31] AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods
    Li, Huanhuan
    Jiao, Hang
    Yang, Zaili
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2023, 175
  • [32] A Novel Deep Learning Representation for Industrial Control System Data
    Zhang, Bowen
    Shi, Yanbo
    Zhao, Jianming
    Wang, Tianyu
    Wang, Kaidi
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03) : 2703 - 2717
  • [33] Data-Driven Robust Control Using Reinforcement Learning
    Ngo, Phuong D.
    Tejedor, Miguel
    Godtliebsen, Fred
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [34] Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
    Mahouti, Peyman
    Belen, Aysu
    Tari, Ozlem
    Belen, Mehmet Ali
    Karahan, Serdal
    Koziel, Slawomir
    ELECTRONICS, 2023, 12 (07)
  • [35] A Data-Driven Approach for Grid Synchronization Based on Deep Learning
    Miranbeigi, Mohammadreza
    Kandula, Prasad
    Divan, Deepak
    2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 2985 - 2991
  • [36] A data-driven deep learning approach for options market making
    Lai, Qianhui
    Gao, Xuefeng
    Li, Lingfei
    QUANTITATIVE FINANCE, 2021,
  • [37] A data-driven deep learning approach for options market making
    Lai, Qianhui
    Gao, Xuefeng
    Li, Lingfei
    QUANTITATIVE FINANCE, 2023, 23 (05) : 777 - 797
  • [38] Data-Driven Resource Allocation for Deep Learning in IoT Networks
    Chun, Chang-Jae
    Jeong, Cheol
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 2082 - 2096
  • [39] Data-Driven Impulse Response Regularization via Deep Learning
    Andersson, Carl
    Wahlstrom, Niklas
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2018, 51 (15): : 1 - 6
  • [40] Data-Driven Nonlinear Modal Analysis: A Deep Learning Approach
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 229 - 231