Novel Data-Driven Deep Learning Assisted CVA for Ironmaking System Prediction and Control

被引:1
|
作者
Lou, Siwei [1 ]
Yang, Chunjie [1 ]
Zhang, Xujie [1 ]
Wu, Ping [2 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Informat Sci & Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Ironmaking system (IS); deep learning; nonlinear state-space model; model predictive control; MOLTEN IRON QUALITY;
D O I
10.1109/TCSII.2023.3286899
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Effective control of blast furnace ironmaking system (IS) is crucial to maintain the metallurgical industry in smooth operation. Also, the quality of molten iron (MIQ) can be assessed using indices of phosphorus [P], sulfur [S], and silicon [Si] contents, which provide insight into the current state of the molten iron and internal operations of the blast furnace. In this brief, we propose a novel deep learning assisted canonical variate analysis (DLaCVA) method for modeling and predicting MIQ and optimizing IS control. Due to the highly complex physical and chemical reactions within IS, we build a nonlinear state-space model and estimate its state, utilizing DLaCVA. Moreover, we theoretically analyze of how deep learning can aid in state-space modeling, such as deriving the corresponding optimization objective and learning gradient, laying the basis for exploring deep learning in system identification further. Ultimately, we devise a predictive control strategy based on a quadratic performance index to attain optimal MIQ control performance. Experiments utilizing genuine IS data display that DLaCVA outperforms other methods concerning modeling accuracy and control effectiveness.
引用
收藏
页码:4544 / 4548
页数:5
相关论文
共 50 条
  • [11] Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning
    Li, Tenghui
    Yang, Jin
    Ioannou, Anastasia
    RENEWABLE ENERGY, 2024, 234
  • [12] Data-Driven Wind Farm Control via Multiplayer Deep Reinforcement Learning
    Dong, Hongyang
    Zhao, Xiaowei
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (03) : 1468 - 1475
  • [13] Different data-driven prediction of global ionospheric TEC using deep learning methods
    Tang, Jun
    Ding, Mingfei
    Yang, Dengpan
    Fan, Cihang
    Khonsari, Nasim
    Mao, Wenfei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [14] Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning
    Yasuda, Shohei
    Katayama, Hiroki
    Nakanishi, Wataru
    Iryo, Takamasa
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2024, 22 (01) : 136 - 145
  • [15] Data-driven deep learning prediction of full molecular weight distribution in polymerization processes
    Mora-Mariano, Dante
    Flores-Tlacuahuac, Antonio
    Zapata-Gonzalez, Ivan
    Saldivar-Guerra, Enrique
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [16] Data-driven deep learning prediction of boron-doped graphene work function
    Lu, Yunhua
    Yu, Jintao
    Zhang, Qingwei
    Zhang, Junan
    Zhang, Chao
    Bi, Qiuyan
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [17] Monthly Arctic sea ice prediction based on a data-driven deep learning model
    Huan, Xiaohe
    Wang, Jielong
    Liu, Zhongfang
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2023, 5 (10):
  • [18] Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning
    Shohei Yasuda
    Hiroki Katayama
    Wataru Nakanishi
    Takamasa Iryo
    International Journal of Intelligent Transportation Systems Research, 2024, 22 : 136 - 145
  • [19] Data-driven prediction of soccer outcomes using enhanced machine and deep learning techniques
    Mills, Ebenezer Fiifi Emire Atta
    Deng, Zihui
    Zhong, Zhuoqing
    Li, Jinger
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [20] Multimodal Data-Driven Prediction of PEMFC Performance and Process Conditions Using Deep Learning
    Shin, Seoyoon
    Kim, Jiwon
    Lee, Seokhee
    Shin, Tae Ho
    Ryu, Ga-Ae
    IEEE ACCESS, 2024, 12 : 168030 - 168042