Mechanistic exploration of Co doping in optimizing the electrochemical performance of 2H-MoS2/N-doped carbon anode for potassium-ion battery

被引:6
|
作者
Zhang, Panpan [1 ]
Wang, Xu [1 ]
Yang, Yangyang [1 ]
Yang, Haifeng [1 ]
Lu, Chunsheng [2 ]
Su, Mingru [1 ]
Zhou, Yu [1 ]
Dou, Aichun [1 ]
Li, Xiaowei [1 ]
Hou, Xiaochuan [3 ]
Liu, Yunjian [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Curtin Univ, Sch Civil & Mech Engn, Perth, WA 6845, Australia
[3] Zhejiang New Era Zhongneng Circulat Technol Co Ltd, Shaoxing 312369, Peoples R China
关键词
Potassium -ion battery; Doping; Electrochemical performance; First -principles study; TOTAL-ENERGY CALCULATIONS; ACTIVE EDGE SITES; MOS2; MONOLAYER; STABILITY; EVOLUTION;
D O I
10.1016/j.jcis.2023.11.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The 2H-MoS2/nitrogen-doped carbon (2H-MoS2/NC) composite is a promising anode material for potassium-ion batteries (PIBs). Various transition metal doping has been adopted to optimize the poor intrinsic electronic conductivity and lack of active sites in the intralayer of 2H-MoS2. However, its optimization mechanisms have not been well probed. In this paper, using Cobalt (Co) as an example, we aim to investigate the influence of transition metal doping on the electronic and mechanical properties and electrochemical performance of 2HMoS2/NC via first-principles calculation. Co doping is found to be effective in improving the electronic conductivity and the areas of active sites on different positions (C surface, interface, and MoS2 surface) of 2H-MoS2/ NC. The increased active sites can optimize K adsorption and diffusion capability/processes, where general smaller K adsorption energies and diffusion energy barriers are found after Co doping. This helps improve the rate performance. Especially, the pyridinic N (pyN), pyrrolic N (prN), and graphitic N (grN) are first unveiled to respectively work best in K kinetic adsorption, diffusion, and interfacial stability. These findings are instructive to experimental design of high rate 2H-MoS2/NC electrode materials. The roles of different N types provide new ideas for optimal design of other functional composite materials.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [41] Enhanced Electrochemical Performance of a Tin-antimony Alloy/N-Doped Carbon Nanocomposite as a Sodium-Ion Battery Anode
    Youn, Duck Hyun
    Park, Hunmin
    Loeffler, Kathryn E.
    Kim, Jun-Hyuk
    Heller, Adam
    Mullins, C. Buddie
    CHEMELECTROCHEM, 2018, 5 (02): : 391 - 396
  • [42] Heteroatom-doped carbon anode materials for potassium-ion batteries: From mechanism, synthesis to electrochemical performance
    Wang, Yang
    Yuan, Fei
    Li, Zhaojin
    Zhang, Di
    Yu, Qiyao
    Wang, Bo
    APL MATERIALS, 2022, 10 (03)
  • [43] Superior electrochemical performance of layered WTe2as potassium-ion battery electrode
    Soares, Davi Marcelo
    Singh, Gurpreet
    NANOTECHNOLOGY, 2020, 31 (45)
  • [44] Co-MOF derived MoSe2@CoSe2/N-doped carbon nanorods as high-performance anode materials for potassium ion batteries
    Oh, Hong Geun
    Park, Seung-Keun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10677 - 10688
  • [45] Design of heterostructured hydrangea-like FeS 2 /MoS 2 encapsulated in nitrogen-doped carbon as high-performance anode for potassium-ion capacitors
    Liang, Huanyu
    Wang, Xinyu
    Shi, Jing
    Chen, Jingwei
    Tian, Weiqian
    Huang, Minghua
    Wu, Jingyi
    Zhu, Yue
    Wang, Huanlei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 664 : 96 - 106
  • [46] MoS2 microsphere@ N-doped carbon composites as high performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Yue, Song
    Wang, Jie
    Zhao, Yun
    Li, Qun
    Yin, Mengmeng
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Shi, Daxin
    Jiao, Qingze
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 840 : 230 - 236
  • [47] Tellurium-doped MoS2/carbon composite nanotubes for potassium-ion capacitors
    Zhang, Xue
    Tian, Shuang
    Liu, Sen
    Wang, Tengteng
    Huang, Jingyi
    Gao, Peibo
    Feng, Yu
    Zhou, Jin
    Zhou, Tong
    APPLIED PHYSICS LETTERS, 2024, 125 (26)
  • [48] FeSe2/nitrogen-doped carbon as anode material for Potassium-ion batteries
    Liu, Yanzhen
    Yang, Chenghao
    Li, Youpeng
    Zheng, Fenghua
    Li, Yijuan
    Deng, Qiang
    Zhong, Wentao
    Wang, Gang
    Liu, Tiezhong
    CHEMICAL ENGINEERING JOURNAL, 2020, 393
  • [49] S/N co-doped hierarchical porous carbon from lignite as high-performance anode for potassium-ion batteries
    Jiao, Rongji
    Deng, Zhengjun
    Lei, Long
    Liu, Yunying
    Cui, Jinlong
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [50] N-doped TiO2 nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery
    Li, Yueming
    Wang, Zhiguang
    Lv, Xiao-Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (37) : 15473 - 15479