Active learning for medical image segmentation with stochastic batches

被引:6
作者
Gaillochet, Melanie [1 ]
Desrosiers, Christian [1 ]
Lombaert, Herve [1 ]
机构
[1] ETS Montreal, 1100 Notre Dame St W, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Active learning; Segmentation; Medical image analysis; Uncertainty;
D O I
10.1016/j.media.2023.102958
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of learning-based algorithms improves with the amount of labelled data used for training. Yet, manually annotating data is particularly difficult for medical image segmentation tasks because of the limited expert availability and intensive manual effort required. To reduce manual labelling, active learning (AL) targets the most informative samples from the unlabelled set to annotate and add to the labelled training set. On the one hand, most active learning works have focused on the classification or limited segmentation of natural images, despite active learning being highly desirable in the difficult task of medical image segmentation. On the other hand, uncertainty-based AL approaches notoriously offer sub-optimal batch-query strategies, while diversity-based methods tend to be computationally expensive. Over and above methodological hurdles, random sampling has proven an extremely difficult baseline to outperform when varying learning and sampling conditions. This work aims to take advantage of the diversity and speed offered by random sampling to improve the selection of uncertainty-based AL methods for segmenting medical images. More specifically, we propose to compute uncertainty at the level of batches instead of samples through an original use of stochastic batches (SB) during sampling in AL. Stochastic batch querying is a simple and effective addon that can be used on top of any uncertainty-based metric. Extensive experiments on two medical image segmentation datasets show that our strategy consistently improves conventional uncertainty-based sampling methods. Our method can hence act as a strong baseline for medical image segmentation. The code is available on: https://github.com/Minimel/StochasticBatchAL.git.
引用
收藏
页数:11
相关论文
共 46 条
[1]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]  
Ash J. T., 2020, INT C LEARNING REPRE
[3]  
Bai Y., 2022, NEURIPS WORKSH HUM L
[4]   The power of ensembles for active learning in image classification [J].
Beluch, William H. ;
Genewein, Tim ;
Nuernberger, Andreas ;
Koehler, Jan M. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9368-9377
[5]   Reducing Label Effort: Self-Supervised meets Active Learning [J].
Bengar, Javad Zolfaghari ;
van de Weijer, Joost ;
Twardowski, Bartlomiej ;
Raducanu, Bogdan .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :1631-1639
[6]   A survey on active learning and human-in-the-loop deep learning for medical image analysis [J].
Budd, Samuel ;
Robinson, Emma C. ;
Kainz, Bernhard .
MEDICAL IMAGE ANALYSIS, 2021, 71
[7]  
Burmeister J.-M., 2022, ICML WORKSH AD EXP D
[8]   TAAL: Test-Time Augmentation for Active Learning in Medical Image Segmentation [J].
Gaillochet, Melanie ;
Desrosiers, Christian ;
Lombaert, Herve .
DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022), 2022, 13567 :43-53
[9]  
Gal Y, 2017, PR MACH LEARN RES, V70
[10]  
Gal Y, 2016, PR MACH LEARN RES, V48