Adaptive rotation attention network for accurate defect detection on magnetic tile surface

被引:3
|
作者
Luo, Fang [1 ]
Cui, Yuan [2 ]
Wang, Xu [3 ]
Zhang, Zhiliang [1 ]
Liao, Yong [4 ]
机构
[1] Qingyuan Polytech, Sch Mechatron & Automot Engn, Qingyuan 511500, Peoples R China
[2] Guangzhou Light Ind Vocat Sch, Dept Intelligent Control, Guangzhou 510300, Peoples R China
[3] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[4] Xiangnan Univ, Sch Phys & Elect Elect Engn, Microelect & Optoelect Technol Key Lab Hunan Highe, Chenzhou 423000, Peoples R China
关键词
surface defect detection; rotation convolution; attention mechanism; convolutional neural networks; NEURAL-NETWORK;
D O I
10.3934/mbe.2023779
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Defect detection on magnetic tile surfaces is of great significance for the production monitoring of permanent magnet motors. However, it is challenging to detect the surface defects from the magnetic tile due to these issues: 1) Defects appear randomly on the surface of the magnetic tile; 2) the defects are tiny and often overwhelmed by the background. To address such problems, an Adaptive Rotation Attention Network (ARA-Net) is proposed for defect detection on the magnetic tile surface, where the Adaptive Rotation Convolution (ARC) module is devised to capture the random defects on the magnetic tile surface by learning multi-view feature maps, and then the Rotation Region Attention (RAA) module is designed to locate the small defects from the complicated background by focusing more attention on the defect features. Experiments conducted on the MTSD3C6K dataset demonstrate the proposed ARA-Net outperforms the state-of-the-art methods, further providing assistance for permanent magnet motor monitoring.
引用
收藏
页码:17554 / 17568
页数:15
相关论文
共 50 条
  • [1] An Adaptive Defect-Aware Attention Network for Accurate PCB-Defect Detection
    Liu, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [2] Attention-based convolution neural network for magnetic tile surface defect classification and detection
    Li, Ju
    Wang, Kai
    He, Mengfan
    Ke, Luyao
    Wang, Heng
    APPLIED SOFT COMPUTING, 2024, 159
  • [3] Scale Adaptive Attention Network for Accurate Defect Detection From Metal Parts
    Sun, Zijiao
    Wang, Xiaohong
    Luo, Fang
    Zhang, Zhiliang
    Li, Yanghui
    IEEE ACCESS, 2024, 12 : 131035 - 131043
  • [4] RoIA: Region of Interest Attention Network for Surface Defect Detection
    Liu, Taiheng
    Cao, Guang-Zhong
    He, Zhaoshui
    Xie, Shengli
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2023, 36 (02) : 159 - 169
  • [5] SDDNet: A Fast and Accurate Network for Surface Defect Detection
    Cui, Lisha
    Jiang, Xiaoheng
    Xu, Mingliang
    Li, Wanqing
    Lv, Pei
    Zhou, Bing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [6] Convolution With Rotation Invariance for Online Detection of Tiny Defects on Magnetic Tile Surface
    Zhu, Yangyang
    Xie, Luofeng
    Yin, Ming
    Yin, Guofu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] An Adaptive Image Segmentation Network for Surface Defect Detection
    Liu, Taiheng
    He, Zhaoshui
    Lin, Zhijie
    Cao, Guang-Zhong
    Su, Wenqing
    Xie, Shengli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 8510 - 8523
  • [8] LASDNET: A LIGHTWEIGHT ADAPTIVE SURFACE DEFECT DETECTION NETWORK
    Wei, Qiancheng
    Yuan, Yi
    Liu, Ying
    Al-Hababi, Mohammed Ali Mohammed
    Qiya, S. U.
    Muyao, Y. U.
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 209 - 213
  • [9] TAANet: A Task-Aware Attention Network for Weak Surface Defect Detection
    Cui, Lisha
    Xie, Suran
    Chen, Enqing
    Jiang, Xiaoheng
    Wang, Zhiyu
    Guo, Xunjiang
    Xu, Mingliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [10] A lightweight parallel attention residual network for tile defect recognition
    Lv, Cheng
    Zhang, Enxu
    Qi, Guowei
    Li, Fei
    Huo, Jiaofei
    SCIENTIFIC REPORTS, 2024, 14 (01):