Chopped Basalt Fiber-Reinforced High-Performance Concrete: An Experimental and Analytical Study

被引:18
|
作者
Tahwia, Ahmed M. [1 ]
Helal, Khaled A. [1 ]
Youssf, Osama [1 ]
机构
[1] Mansoura Univ, Fac Engn, Struct Engn Dept, Mansoura 35516, Egypt
来源
JOURNAL OF COMPOSITES SCIENCE | 2023年 / 7卷 / 06期
关键词
high-performance concrete; basalt fibers; compressive strength; impact resistance; SEM analysis; CRUMB RUBBER CONCRETE; MECHANICAL-PROPERTIES; IMPACT RESISTANCE; SILICA FUME; STRENGTH; BEHAVIOR; MICROSTRUCTURE;
D O I
10.3390/jcs7060250
中图分类号
TB33 [复合材料];
学科分类号
摘要
Basalt fiber (BF) is an environmentally friendly type of fiber that has attracted the attention of researchers in recent years due to its excellent performance in concrete constructions. This current research was conducted to investigate the effect of chopped basalt fiber on the workability, compressive strength, and impact resistance of high-performance concrete (HPC). Three various lengths (3, 12, and 18 mm) and six volume fractions (0%, 0.075%, 0.15%, 0.3%, 0.45%, and 0.6% by concrete volume) of BF were used in producing sixteen HPC mixes. HPC compressive strength and impact resistance were measured for each mix. Scanning electron microscopy (SEM) analysis was also conducted on selected mixes to closely investigate the effects of the applied variables through the microstructural scale. An empirical model was developed to study the relationship between the impact energy and compressive strength of BF-reinforced HPC. The results show that adding BF improves the compressive strength and impact resistance. Compared with the control concrete, the compressive strength of the HPC reinforced with 3 mm, 12 mm, and 18 mm BF increased by 12.2%, 15.1%, and 17.5%, respectively. The impact resistance increased with a dosage of 8 kg/m(3) for all lengths of BF. The SEM observations revealed that the BF accumulated in pores and on the surface of the attached cement which improved the microstructure of the interfacial transition zone (ITZ), which further enhanced the strength and ductility of the HPC.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete
    Zhou, Hao
    Jia, Bin
    Huang, Hui
    Mou, Yanling
    MATERIALS, 2020, 13 (06)
  • [42] Prediction of Flexural Behavior of Fiber-Reinforced High-Performance Concrete
    Chand, Umesh
    RECYCLED WASTE MATERIALS, EGRWSE 2018, 2019, 32 : 193 - 198
  • [43] Special Issue on Advances in High-Performance Fiber-Reinforced Concrete
    Tang, Chao-Wei
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [44] Study on the Fracture Toughness of Polypropylene-Basalt Fiber-Reinforced Concrete
    Liang, Ninghui
    Ren, Lianxi
    Tian, Shuo
    Liu, Xinrong
    Zhong, Zuliang
    Deng, Zhiyun
    Yan, Ru
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2021, 15 (01)
  • [45] Study on shear behavior of high-performance polypropylene fiber-reinforced lightweight aggregate concrete beams
    Xiang, Zehui
    Zhou, Jie
    Niu, Jiangang
    Feng, Xuelei
    Wang, Jingsong
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [46] Bond Performance of Basalt Fiber-Reinforced Polymer Bars to Concrete
    El Refai, Ahmed
    Ammar, Mohamed-Amine
    Masmoudi, Radhouane
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (03)
  • [47] Investigation of the Workability, Strength, and Durability of Fiber-Reinforced High-Performance Concrete with Full Aeolian Sand
    Zhu, Linlin
    Zheng, Mulian
    Zhang, Shu
    Zhang, Wei
    Chen, Wang
    Ou, Zhongwen
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (03)
  • [48] Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete
    Yang, Jian
    Chen, Baochun
    Nuti, Camillo
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 302
  • [49] Experimental study on the mechanical behaviour of short chopped basalt fibre reinforced concrete beams
    Liu, Qian
    Cai, Lianheng
    Guo, Rui
    STRUCTURES, 2022, 45 : 1110 - 1123
  • [50] Experimental and analytical study on channel shear connectors in fiber-reinforced concrete
    Maleki, Shervin
    Mahoutian, Mehrdad
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2009, 65 (8-9) : 1787 - 1793