Chopped Basalt Fiber-Reinforced High-Performance Concrete: An Experimental and Analytical Study

被引:18
|
作者
Tahwia, Ahmed M. [1 ]
Helal, Khaled A. [1 ]
Youssf, Osama [1 ]
机构
[1] Mansoura Univ, Fac Engn, Struct Engn Dept, Mansoura 35516, Egypt
来源
JOURNAL OF COMPOSITES SCIENCE | 2023年 / 7卷 / 06期
关键词
high-performance concrete; basalt fibers; compressive strength; impact resistance; SEM analysis; CRUMB RUBBER CONCRETE; MECHANICAL-PROPERTIES; IMPACT RESISTANCE; SILICA FUME; STRENGTH; BEHAVIOR; MICROSTRUCTURE;
D O I
10.3390/jcs7060250
中图分类号
TB33 [复合材料];
学科分类号
摘要
Basalt fiber (BF) is an environmentally friendly type of fiber that has attracted the attention of researchers in recent years due to its excellent performance in concrete constructions. This current research was conducted to investigate the effect of chopped basalt fiber on the workability, compressive strength, and impact resistance of high-performance concrete (HPC). Three various lengths (3, 12, and 18 mm) and six volume fractions (0%, 0.075%, 0.15%, 0.3%, 0.45%, and 0.6% by concrete volume) of BF were used in producing sixteen HPC mixes. HPC compressive strength and impact resistance were measured for each mix. Scanning electron microscopy (SEM) analysis was also conducted on selected mixes to closely investigate the effects of the applied variables through the microstructural scale. An empirical model was developed to study the relationship between the impact energy and compressive strength of BF-reinforced HPC. The results show that adding BF improves the compressive strength and impact resistance. Compared with the control concrete, the compressive strength of the HPC reinforced with 3 mm, 12 mm, and 18 mm BF increased by 12.2%, 15.1%, and 17.5%, respectively. The impact resistance increased with a dosage of 8 kg/m(3) for all lengths of BF. The SEM observations revealed that the BF accumulated in pores and on the surface of the attached cement which improved the microstructure of the interfacial transition zone (ITZ), which further enhanced the strength and ductility of the HPC.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Experimental Study on Impact Performance of Basalt-Polypropylene Fiber Reinforced High-Performance Concrete
    Zhang, Maoyu
    Li, Bo
    Zheng, Zezhong
    Zhang, Jicheng
    MATERIALS, 2024, 17 (13)
  • [2] Experimental and analytical study of the flexural behavior of basalt fiber-reinforced concrete beams
    Li, Zhihua
    Ma, Chengfei
    Guo, Xuan
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2342 - 2362
  • [3] Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete
    Jalasutram, Sruthi
    Sahoo, Dipti Ranjan
    Matsagar, Vasant
    STRUCTURAL CONCRETE, 2017, 18 (02) : 292 - 302
  • [4] Mechanical Properties of Chopped Basalt Fiber-Reinforced Lightweight Aggregate Concrete and Chopped Polyacrylonitrile Fiber Reinforced Lightweight Aggregate Concrete
    Zeng, Yusheng
    Zhou, Xianyu
    Tang, Aiping
    Sun, Peng
    MATERIALS, 2020, 13 (07)
  • [5] Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature
    Khan, Mehran
    Cao, Mingli
    Chaopeng, Xie
    Ali, Majid
    FIRE AND MATERIALS, 2022, 46 (01) : 205 - 226
  • [6] Effect of macro polypropylene fiber and basalt fiber on impact resistance of basalt fiber-reinforced polymer-reinforced concrete
    Wang, Qingxuan
    Ding, Yining
    Zhang, Yulin
    Castro, Cecilia
    STRUCTURAL CONCRETE, 2021, 22 (01) : 503 - 515
  • [7] Experimental investigation of the effect of basalt fibers on the mechanical properties and gamma ray shielding properties of high-performance fiber-reinforced concrete containing magnetite fine particles
    Barforoush, Mahdis Jalalpour
    Roshan, Alireza Mirzagoltabar
    Nazarpour, Hadi
    Razavi, Seyed Mohammadhossein
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 458
  • [8] High-performance fiber-reinforced concrete: a review
    Vahid Afroughsabet
    Luigi Biolzi
    Togay Ozbakkaloglu
    Journal of Materials Science, 2016, 51 : 6517 - 6551
  • [9] Basalt fiber-reinforced foam concrete containing silica fume: An experimental study
    Gencel, Osman
    Nodehi, Mehrab
    Bayraktar, Oguzhan Yavuz
    Kaplan, Gokhan
    Benli, Ahmet
    Gholampour, Aliakbar
    Ozbakkaloglu, Togay
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 326
  • [10] Experimental Study and Mechanism Analysis of the Shear Dynamic Performance of Basalt Fiber-Reinforced Concrete
    Xie, Lei
    Sun, Xinjian
    Yu, Zhenpeng
    Zhang, Juntao
    Li, Guochao
    Diao, Mushuang
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (01)