Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding

被引:5
作者
Cihan, Ebru [1 ,2 ,3 ]
Dietzel, Dirk [1 ,4 ]
Jany, Benedykt R. [5 ]
Schirmeisen, Andre [1 ,4 ]
机构
[1] Justus Liebig Univ Giessen, Inst Appl Phys, D-35392 Giessen, Germany
[2] Tech Univ Dresden, Inst Mat Sci, D-01069 Dresden, Germany
[3] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01069 Dresden, Germany
[4] Justus Liebig Univ Giessen, Ctr Mat Res, D-35392 Giessen, Germany
[5] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Fac Phys Astron & Appl Comp Sci, Krakow, Poland
关键词
PATTERN-FORMATION; THIN-FILMS; ANTIMONY; FRICTION; NANOPARTICLES; ORIENTATION; DEPENDENCE; RESISTANCE; GROWTH; WEAR;
D O I
10.1103/PhysRevLett.130.126205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Structural superlubricity describes the state of greatly reduced friction between incommensurate atomically flat surfaces. Theory predicts that, in the superlubric state, the remaining friction sensitively depends on the exact structural configuration. In particular the friction of amorphous and crystalline structures for, otherwise, identical interfaces should be markedly different. Here, we measure friction of antimony nanoparticles on graphite as a function of temperature between 300 and 750 K. We observe a characteristic change of friction when passing the amorphous-crystalline phase transition above 420 K, which shows irreversibility upon cooling. The friction data is modeled with a combination of an area scaling law and a Prandtl-Tomlinson type temperature activation. We find that the characteristic scaling factor gamma, which is a fingerprint of the structural state of the interface, is reduced by 20% when passing the phase transition. This validates the concept that structural superlubricity is determined by the effectiveness of atomic force canceling processes.
引用
收藏
页数:7
相关论文
共 60 条
[1]  
aps, PHYS REV LETT, DOI [10.1103/PhysRevLett.130.126205, DOI 10.1103/PHYSREVLETT.130.126205]
[2]   Temperature dependence of the resistance of antimony nanowire arrays [J].
Barati, M ;
Chow, JCL ;
Ummat, PK ;
Datars, WR .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (13) :2955-2962
[3]   Emerging superlubricity: A review of the state of the art and perspectives on future research [J].
Baykara, Mehmet Z. ;
Vazirisereshk, Mohammad R. ;
Martini, Ashlie .
APPLIED PHYSICS REVIEWS, 2018, 5 (04)
[4]   Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime [J].
Bilas, P ;
Romana, L ;
Kraus, B ;
Bercion, Y ;
Mansot, JL .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (02) :415-421
[5]  
Bohlein T, 2012, NAT MATER, V11, P126, DOI [10.1038/NMAT3204, 10.1038/nmat3204]
[6]   Understanding frictional duality and bi-duality: Sb-nanoparticles on HOPG [J].
Brndiar, Jan ;
Turansky, Robert ;
Dietzel, Dirk ;
Schirmeisen, Andre ;
Stich, Ivan .
NANOTECHNOLOGY, 2011, 22 (08)
[7]   Antimony thin films demonstrate programmable optical nonlinearity [J].
Cheng, Zengguang ;
Milne, Tara ;
Salter, Patrick ;
Kim, Judy S. ;
Humphrey, Samuel ;
Booth, Martin ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2021, 7 (01)
[8]   Structural lubricity under ambient conditions [J].
Cihan, Ebru ;
Ipek, Semran ;
Durgun, Engin ;
Baykara, Mehmet Z. .
NATURE COMMUNICATIONS, 2016, 7
[9]   (In)commensurability, scaling, and multiplicity of friction in nanocrystals and application to gold nanocrystals on graphite [J].
de Wijn, A. S. .
PHYSICAL REVIEW B, 2012, 86 (08)
[10]   Structural superlubricity in graphite flakes assembled under ambient conditions [J].
Deng, He ;
Ma, Ming ;
Song, Yiming ;
He, Qichang ;
Zheng, Quanshui .
NANOSCALE, 2018, 10 (29) :14314-14320