CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images

被引:10
作者
Wang, Meihuan [1 ,2 ]
Qi, Shouliang [1 ,2 ]
Wu, Yanan [1 ,2 ]
Sun, Yu [1 ,3 ]
Chang, Runsheng [1 ,2 ]
Pang, Haowen [1 ,2 ]
Qian, Wei [1 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Minist Educ, Key Lab Intelligent Comp Med Image, Shenyang, Peoples R China
[3] Gen Hosp Northern Theater Command, Dept Radiol, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Pulmonary vessel segmentation; Image registration; Non-contrast computed tomography; Contrast-enhanced computed tomography; COMPUTED-TOMOGRAPHY SCANS; LUNG; ARTERY; CLASSIFICATION; EPIDEMIOLOGY; TREE;
D O I
10.1016/j.bspc.2022.104565
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: The automatic segmentation of pulmonary vessels from CT images has important significance. However, accurately annotating pulmonary vessels directly in non-contrast CT (NCCT) images is complex and time-consuming.Methods: This study aims to draw annotations with contrast-enhanced CT (CECT) images and train a deep -learning model for segmenting pulmonary vessels from NCCT images. Two datasets with 63 CT scans were collected. Dataset D1 included 17 cases annotated in CECT images, 10 cases annotated in NCCT images, and 12 NCCT scans. Dataset D2 consisted of 12 CECT and 12 NCCT scans with annotations. First, annotations drawn in CECT images (Dataset D1) are transferred to NCCT images via spatial registration. Second, a CE-NC-VesselSegNet is proposed and trained using the transferred annotations to segment pulmonary vessels from NCCT images. Finally, the CE-NC-VesselSegNet is evaluated and compared with its counterparts.Results: After registration, the maximum and root mean square error between CECT and NCCT images decreases, while the structural similarity and peak signal-to-noise ratio increase. CE-NC-VesselSegNet can accurately segment pulmonary vessels from NCCT images with a Dice of 0.856. In the external validation using Dataset D2, the CE-NC-VesselSegNet achieves a Dice of 0.738, which is higher compared with that of NC-VesselSegNet trained by D2. Visual inspections have shown that CE-NC-VesselSegNet enables more accurate and continuous segmentation compared with its counterpart.Conclusions: Annotations of pulmonary vessels drawn in CECT images can be transferred to NCCT images via spatial registration. Using these transferred annotations of high quality, a CE-NC-VesselSegNet can be trained to segment pulmonary vessels from NCCT images.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
Bilic P, 2022, Arxiv, DOI arXiv:1901.04056
[2]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[3]  
Chandrashekar A, 2020, EUR HEART J, V41, P156
[4]   Automatic Pulmonary Artery-Vein Separation and Classification in Computed Tomography Using Tree Partitioning and Peripheral Vessel Matching [J].
Charbonnier, Jean-Paul ;
Brink, Monique ;
Ciompi, Francesco ;
Scholten, Ernst T. ;
Schaefer-Prokop, Cornelia M. ;
van Rikxoort, Eva M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (03) :882-892
[5]   Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network [J].
Choi, Jae Won ;
Cho, Yeon Jin ;
Ha, Ji Young ;
Lee, Seul Bi ;
Lee, Seunghyun ;
Choi, Young Hun ;
Cheon, Jung-Eun ;
Kim, Woo Sun .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[7]   PULMONARY NODULES - IMPROVED DETECTION WITS VASCULAR SEGMENTATION AND EXTRACTION WITH SPIRAL CT [J].
CROISILLE, P ;
SOUTO, M ;
COVA, M ;
WOOD, S ;
AFEWORK, Y ;
KUHLMAN, JE ;
ZERHOUNI, EA .
RADIOLOGY, 1995, 197 (02) :397-401
[8]   Pulmonary Vessel Segmentation Based on Orthogonal Fused U-Net plus plus of Chest CT Images [J].
Cui, Hejie ;
Liu, Xinglong ;
Huang, Ning .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 :293-300
[9]   Computed Tomographic Measures of Pulmonary Vascular Morphology in Smokers and Their Clinical Implications [J].
Estepar, Raul San Jose ;
Kinney, Gregory L. ;
Black-Shinn, Jennifer L. ;
Bowler, Russell P. ;
Kindlmann, Gordon L. ;
Ross, James C. ;
Kikinis, Ron ;
Han, MeiLan K. ;
Come, Carolyn E. ;
Diaz, Alejandro A. ;
Cho, Michael H. ;
Hersh, Craig P. ;
Schroeder, Joyce D. ;
Reilly, John J. ;
Lynch, David A. ;
Crapo, James D. ;
Wells, J. Michael ;
Dransfield, Mark T. ;
Hokanson, John E. ;
Washko, George R. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 188 (02) :231-239
[10]   Segmentation of pulmonary vascular tree from 3D CT thorax scans [J].
Fabijanska, Anna .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2015, 35 (02) :106-119