Fuzzy-Based Optimization and Control of a Soft Exosuit for Compliant Robot-Human-Environment Interaction

被引:10
作者
Li, Qinjian [1 ,2 ]
Qi, Wen [3 ]
Li, Zhijun [1 ,2 ]
Xia, Haisheng [1 ,2 ]
Kang, Yu [1 ,2 ]
Cheng, Lin [4 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[3] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[4] Univ Sci & Technol China, Sch Microelect, Hefei Natl Lab Phys Sci Microscale, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive control; compliant interaction; fuzzy logic system (FLS); soft exosuit; EXOSKELETON;
D O I
10.1109/TFUZZ.2022.3185450
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many previous studies of soft exosuits improved human locomotion performance. However, there is no example to control a soft exosuit using human ankle impedance adaption in assistance tasks compliantly. In this article, the human-environment interaction information is exploited into the exosuit control. A novel fuzzy-based optimization and control method of soft exosuit is proposed to provide plantarflexion assistance for human walking by changing the human-robot interaction. In particular, a fuzzy neurodynamics optimization is developed to learn the unknown human ankle impedance parameters automatically. A fuzzy approximation technique is applied to improve the control performance of the exosuit when a human is walking with unknown human-robot interaction model parameters. This control scheme guarantees that the human-robot dynamics follows a target human ankle impedance model to obtain the compliant interaction performance. Experiments on different participants verify the effectiveness of the control scheme. Results show that a compliant human-robot interaction is achieved by learning the human-environment interaction parameters, i.e., the human ankle parameters. It indicates that our proposed method can facilitate exosuit control to achieve compliant robot-human-environment interaction.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 49 条
[1]   Using Generic Upper-Body Movement Strategies in a Free Walking Setting to Detect Gait Initiation Intention in a Lower-Limb Exoskeleton [J].
Alaoui, Omar Mounir ;
Expert, Fabien ;
Morel, Guillaume ;
Jarrasse, Nathanael .
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2020, 2 (02) :236-247
[2]   Control Architecture for Human-Like Motion With Applications to Articulated Soft Robots [J].
Angelini, Franco ;
Della Santina, Cosimo ;
Garabini, Manolo ;
Bianchi, Matteo ;
Bicchi, Antonio .
FRONTIERS IN ROBOTICS AND AI, 2020, 7
[3]   A biologically inspired soft exosuit for walking assistance [J].
Asbeck, Alan T. ;
De Rossi, Stefano M. M. ;
Holt, Kenneth G. ;
Walsh, Conor J. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (06) :744-762
[4]   Stronger, Smarter, Softer Next-Generation Wearable Robots [J].
Asbeck, Alan T. ;
De Rossi, Stefano M. M. ;
Galiana, Ignacio ;
Ding, Ye ;
Walsh, Conor J. .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2014, 21 (04) :22-33
[5]   Fuzzy logic control to suppress noises and coupling effects in a laser tracking system [J].
Bai, Y ;
Zhuang, HQ ;
Roth, ZS .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (01) :113-121
[6]   Adaptive Fuzzy Sliding Mode Control for Network-Based Nonlinear Systems With Actuator Failures [J].
Chen, Liheng ;
Liu, Ming ;
Huang, Xianlin ;
Fu, Shasha ;
Qiu, Jianbin .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (03) :1311-1323
[7]   Reducing the energy cost of human walking using an unpowered exoskeleton [J].
Collins, Steven H. ;
Wiggin, M. Bruce ;
Sawicki, Gregory S. .
NATURE, 2015, 522 (7555) :212-+
[8]   Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton [J].
Di Natali, Christian ;
Poliero, Tommaso ;
Sposito, Matteo ;
Graf, Eveline ;
Bauer, Christoph ;
Pauli, Carole ;
Bottenberg, Eliza ;
De Eyto, Adam ;
O'Sullivan, Leonard ;
Hidalgo, Andres ;
Scherly, Daniel ;
Stadler, Konrad S. ;
Caldwell, Darwin G. ;
Ortiz, Jesus .
ROBOTICA, 2019, 37 (12) :2014-2034
[9]   Contact stiffness and damping estimation for robotic systems [J].
Erickson, D ;
Weber, M ;
Sharf, I .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2003, 22 (01) :41-57
[10]   The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury [J].
Esquenazi, Alberto ;
Talaty, Mukul ;
Packel, Andrew ;
Saulino, Michael .
AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2012, 91 (11) :911-921