Epidemic Spreading in Metapopulation Networks Coupled With Awareness Propagation

被引:28
作者
Gao, Shupeng [1 ,2 ]
Dai, Xiangfeng [1 ,2 ]
Wang, Lin [3 ]
Perra, Nicola [4 ]
Wang, Zhen [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect, Xian 710072, Peoples R China
[3] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
[4] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
基金
中国国家自然科学基金;
关键词
Epidemics; Sociology; Multiplexing; Physical layer; Mathematical models; Behavioral sciences; Correlation; Awareness propagation; epidemic spreading; metapopulation networks; multiplex structure; INFECTIOUS-DISEASES; MOBILITY; BEHAVIOR; MODEL; INFORMATION; DYNAMICS; COVID-19; IMPACT;
D O I
10.1109/TCYB.2022.3198732
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding the feedback loop that links the spatiotemporal spread of infectious diseases and human behavior is an open problem. To study this problem, we develop a multiplex framework that couples epidemic spreading across subpopulations in a metapopulation network (i.e., physical layer) with the spreading of awareness about the epidemic in a communication network (i.e., virtual layer). We explicitly study the interactions between the mobility patterns across subpopulations and the awareness propagation among individuals. We analyze the coupled dynamics using microscopic Markov chains (MMCs) equations and validate the theoretical results via Monte Carlo (MC) simulations. We find that with the spreading of awareness, reducing human mobility becomes more effective in mitigating the large-scale epidemic. We also investigate the influence of varying topological features of the physical and virtual layers and the correlation between the connectivity and local population size per subpopulation. Overall the proposed modeling framework and findings contribute to the growing literature investigating the interplay between the spatiotemporal spread of epidemics and human behavior.
引用
收藏
页码:7686 / 7698
页数:13
相关论文
共 64 条
[31]   Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks [J].
Granell, Clara ;
Gomez, Sergio ;
Arenas, Alex .
PHYSICAL REVIEW LETTERS, 2013, 111 (12)
[32]   Spatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods [J].
Hamer, Wolfgang B. ;
Birr, Tim ;
Verreet, Joseph-Alexander ;
Duttmann, Rainer ;
Klink, Holger .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (01)
[33]   Multiple sources and routes of information transmission: Implications for epidemic dynamics [J].
Hatzopoulos, Vasilis ;
Taylor, Michael ;
Simon, Peter L. ;
Kiss, Istvan Z. .
MATHEMATICAL BIOSCIENCES, 2011, 231 (02) :197-209
[34]   Personalized Crowd Emotional Contagion Coupling the Virtual and Physical Cyberspace [J].
Hong, Xiao ;
Zhang, Guijuan ;
Lu, Dianjie ;
Liu, Hong ;
Zhu, Lei ;
Xu, Mingliang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (03) :1638-1652
[35]  
Keeling M. J., 2011, Modeling Infectious Diseases in Humans and Animals
[36]   The effect of human mobility and control measures on the COVID-19 epidemic in China [J].
Kraemer, Moritz U. G. ;
Yang, Chia-Hung ;
Gutierrez, Bernardo ;
Wu, Chieh-Hsi ;
Klein, Brennan ;
Pigott, David M. ;
du Plessis, Louis ;
Faria, Nuno R. ;
Li, Ruoran ;
Hanage, William P. ;
Brownstein, John S. ;
Layan, Maylis ;
Vespignani, Alessandro ;
Tian, Huaiyu ;
Dye, Christopher ;
Pybus, Oliver G. ;
Scarpino, Samuel V. .
SCIENCE, 2020, 368 (6490) :493-+
[37]   Benchmark graphs for testing community detection algorithms [J].
Lancichinetti, Andrea ;
Fortunato, Santo ;
Radicchi, Filippo .
PHYSICAL REVIEW E, 2008, 78 (04)
[38]  
Lee KM, 2014, UNDERST COMPLEX SYST, P53, DOI 10.1007/978-3-319-03518-5_3
[39]   Contagion dynamics in time-varying metapopulation networks [J].
Liu, Su-Yu ;
Baronchelli, Andrea ;
Perra, Nicola .
PHYSICAL REVIEW E, 2013, 87 (03)
[40]   Socio-demographic and health factors drive the epidemic progression and should guide vaccination strategies for best COVID-19 containment [J].
Markovic, Rene ;
Sterk, Marko ;
Marhl, Marko ;
Perc, Matjaz ;
Gosak, Marko .
RESULTS IN PHYSICS, 2021, 26