Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system

被引:8
作者
Ngo, Hoa T. B. [1 ]
Razzaghi, Mohsen [2 ]
Vo, Thieu N. [1 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
[2] Mississippi State Univ, Dept Math & Stat, Starkville, MS USA
关键词
Fractional-order; Chelyshkov wavelet; Variable-order; Fractional differential equation; Relaxation system; NUMERICAL-SOLUTION; DIFFUSION; EXISTENCE; ALGORITHM; MEMORY;
D O I
10.1007/s11075-022-01354-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an efficient numerical approach to solve variable-order fractional differential equations (VO-FDEs) by applying fractional-order generalized Chelyshkov wavelets (FOGCW). The beta function is used to determine the exact value for the Riemann-Liouville fractional integral operator of the FOGCW. The exact value and the given wavelets are used to solve the VO-FDEs. Six examples are included to demonstrate the effectiveness of this method. In the last example, we show the application of our method to the variable-order fractional relaxation model.
引用
收藏
页码:1571 / 1588
页数:18
相关论文
共 49 条
[1]  
Abramowitz M., 1973, Handbook of Mathematical Functions
[2]  
Agarwal, 1995, DYNAMICAL SYSTEMS AP
[3]   Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations [J].
Akyüz-Dascioglu, AE ;
Sezer, M .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2005, 342 (06) :688-701
[4]   Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2011, 23 (04) :305-318
[5]   Numerical algorithm for the variable-order Caputo fractional functional differential equation [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2016, 85 (03) :1815-1823
[6]   New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions [J].
Bhrawy, Ali H. ;
Alhamed, Yahia A. ;
Baleanu, Dumitru ;
Al-Zahrani, Abdulrahim A. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :1137-1157
[7]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[8]  
Chelyshkov VS, 2006, ELECTRON T NUMER ANA, V25, P17
[9]   Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets [J].
Chen, Yi-Ming ;
Wei, Yan-Qiao ;
Liu, Da-Yan ;
Yu, Hao .
APPLIED MATHEMATICS LETTERS, 2015, 46 :83-88
[10]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703