Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system

被引:7
|
作者
Ngo, Hoa T. B. [1 ]
Razzaghi, Mohsen [2 ]
Vo, Thieu N. [1 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
[2] Mississippi State Univ, Dept Math & Stat, Starkville, MS USA
关键词
Fractional-order; Chelyshkov wavelet; Variable-order; Fractional differential equation; Relaxation system; NUMERICAL-SOLUTION; DIFFUSION; EXISTENCE; ALGORITHM; MEMORY;
D O I
10.1007/s11075-022-01354-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an efficient numerical approach to solve variable-order fractional differential equations (VO-FDEs) by applying fractional-order generalized Chelyshkov wavelets (FOGCW). The beta function is used to determine the exact value for the Riemann-Liouville fractional integral operator of the FOGCW. The exact value and the given wavelets are used to solve the VO-FDEs. Six examples are included to demonstrate the effectiveness of this method. In the last example, we show the application of our method to the variable-order fractional relaxation model.
引用
收藏
页码:1571 / 1588
页数:18
相关论文
共 50 条
  • [1] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [2] A numerical method for solving variable-order fractional diffusion equations using fractional-order Taylor wavelets
    Vo Thieu, N.
    Razzaghi, Mohsen
    Toan Phan Thanh
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2668 - 2686
  • [3] An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations
    Wang, Yahong
    Wang, Wenmin
    Mei, Liangcai
    Lin, Yingzhen
    Sun, Hongbo
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [4] An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Cattani, C.
    Hariharan, G.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 255 - 273
  • [5] Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01)
  • [6] On spectral methods for solving variable-order fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 3937 - 3950
  • [7] A MODIFIED METHOD FOR SOLVING DELAY FUZZY VARIABLE-ORDER FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Khlaif, Abbas I.
    Mohammed, Osama H.
    Feki, Moez
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [8] A review of numerical solutions of variable-order fractional differential equations
    Sun B.
    Zhang W.-C.
    Li Z.-L.
    Fan K.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2433 - 2442
  • [9] Fractional-Order Chelyshkov Collocation Method for Solving Systems of Fractional Differential Equations
    Ahmed, A., I
    Al-Ahmary, T. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] Spectral technique for solving variable-order fractional Volterra integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Baleanu, D.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1659 - 1677