Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system

被引:7
|
作者
Ngo, Hoa T. B. [1 ]
Razzaghi, Mohsen [2 ]
Vo, Thieu N. [1 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
[2] Mississippi State Univ, Dept Math & Stat, Starkville, MS USA
关键词
Fractional-order; Chelyshkov wavelet; Variable-order; Fractional differential equation; Relaxation system; NUMERICAL-SOLUTION; DIFFUSION; EXISTENCE; ALGORITHM; MEMORY;
D O I
10.1007/s11075-022-01354-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an efficient numerical approach to solve variable-order fractional differential equations (VO-FDEs) by applying fractional-order generalized Chelyshkov wavelets (FOGCW). The beta function is used to determine the exact value for the Riemann-Liouville fractional integral operator of the FOGCW. The exact value and the given wavelets are used to solve the VO-FDEs. Six examples are included to demonstrate the effectiveness of this method. In the last example, we show the application of our method to the variable-order fractional relaxation model.
引用
收藏
页码:1571 / 1588
页数:18
相关论文
共 50 条
  • [1] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [2] Fractional-order Chebyshev wavelet method for variable-order fractional optimal control problems
    Ghanbari, Ghodsieh
    Razzaghi, Mohsen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 827 - 842
  • [3] A numerical method for solving variable-order fractional diffusion equations using fractional-order Taylor wavelets
    Vo Thieu, N.
    Razzaghi, Mohsen
    Toan Phan Thanh
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2668 - 2686
  • [4] An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Cattani, C.
    Hariharan, G.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 255 - 273
  • [5] Legendre wavelet method for solving variable-order nonlinear fractional optimal control problems with variable-order fractional Bolza cost
    Kumar, Nitin
    Mehra, Mani
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2122 - 2138
  • [6] An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations
    Wang, Yahong
    Wang, Wenmin
    Mei, Liangcai
    Lin, Yingzhen
    Sun, Hongbo
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [7] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    FRONTIERS IN PHYSICS, 2020, 8
  • [8] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [9] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [10] A MODIFIED METHOD FOR SOLVING DELAY FUZZY VARIABLE-ORDER FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Khlaif, Abbas I.
    Mohammed, Osama H.
    Feki, Moez
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,