On the convergence and superconvergence for a class of two-dimensional time fractional reaction-subdiffusion equations

被引:4
作者
Wei, Yabing [1 ]
Zhao, Yanmin [2 ,3 ]
Chen, Hu [4 ]
Wang, Fenling [2 ,3 ]
Lu, Shujuan [1 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100083, Peoples R China
[2] Xuchang Univ, Sch Sci, Xuchang 461000, Peoples R China
[3] Henan Joint Int Res Lab High Performance Computat, Xuchang, Peoples R China
[4] Ocean Univ China, Sch Math Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic bilinear FEM; initial singularity; L2-1(sigma) time-stepping scheme; reaction-subdiffusion equations; superconvergence; FINITE-DIFFERENCE METHODS; DIFFUSION EQUATION; ELEMENT; SCHEME; MESHES;
D O I
10.1002/num.22899
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes a class of two-dimensional (2-D) time fractional reaction-subdiffusion equations with variable coefficients. The high-order L2-1(sigma) time-stepping scheme on graded meshes is presented to deal with the weak singularity at the initial time f = 0, and the bilinear finite element method (FEM) on anisotropic meshes is used for spatial discretization. Using the modified discrete fractional Gronwall inequality, and combining the interpolation operator and the projection operator, the L-2-norm error estimation and H-1-norm superclose results are rigorously proved. The superconvergence result in the H-1-norm is derived by applying the interpolation postprocessing technique. Finally, numerical examples are presented to verify the validation of our theoretical analysis.
引用
收藏
页码:481 / 500
页数:20
相关论文
共 35 条
[1]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[2]   Space-time finite element method for the distributed-order time fractional reaction diffusion equations [J].
Bu, Weiping ;
Ji, Lun ;
Tang, Yifa ;
Zhou, Jie .
APPLIED NUMERICAL MATHEMATICS, 2020, 152 :446-465
[3]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[4]   Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem [J].
Chen, Hu ;
Stynes, Martin .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) :624-647
[5]   Numerical simulation for the three-dimension fractional sub-diffusion equation [J].
Chen, J. ;
Liu, F. ;
Liu, Q. ;
Chen, X. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) :3695-3705
[6]   Searching for traveling wave solutions of nonlinear evolution equations in mathematical physics [J].
Huang, Bo ;
Xie, Shaofen .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[7]   Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem [J].
Huang, Chaobao ;
Stynes, Martin .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
[8]   Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation [J].
Huang, Chaobao ;
Stynes, Martin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
[9]   Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain [J].
Jiang, H. ;
Liu, F. ;
Turner, I. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3377-3388
[10]   An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) :197-221